
GVPR(1) GVPR(1)

NAME
gvpr − graph pattern scanning and processing language
(previously known asgpr)

SYNOPSIS
gvpr [-icV?] [-o outfile] [-a args] [’prog’ | -f progfile] [files]

DESCRIPTION
gvpr is a graph stream editor inspired byawk. It copies input graphs to its output, possibly transforming
their structure and attributes, creating new graphs, or printing arbitrary information. The graph model is
that provided bylibagraph(3). Inparticular,gvpr reads and writes graphs using the dot language.

Basically,gvpr traverses each input graph, denoted by$G, visiting each node and edge, matching it with
the predicate-action rules supplied in the input program.The rules are evaluated in order. For each predi-
cate evaluating to true, the corresponding action is performed. During the traversal, the current node or
edge being visited is denoted by$.

For each input graph, there is a target subgraph, denoted by$T, initially empty and used to accumulate cho-
sen entities, and an output graph,$O, used for final processing and then written to output. By default, the
output graph is the target graph.The output graph can be set in the program or, in a limited sense, on the
command line.

OPTIONS
The following options are supported:

−a args The stringargs is split into whitespace-separated tokens, with the individual tokens available as
strings in thegvpr program asARGV[0],...,ARGV[ARGC-1] . Whitespace characters within sin-
gle or double quoted substrings, or preceded by a backslash, are ignored as separators. In general,
a backslash character turns off any special meaning of the following character. Note that the
tokens derived from multiple-a flags are concatenated.

−c Use the source graph as the output graph.

−i Derive the node-induced subgraph extension of the output graph in the context of its root graph.

−o outfile
Causes the output stream to be written to the specified file; by default, output is written tostdout.

−f progfile
Use the contents of the specified file as the program to execute on the input. Ifprogfile contains a
slash character, the name is taken as the pathname of the file. Otherwise,gvpr will use the directo-
ries specified in the environment variableGPRPATH to look for the file. If−f is not given, gvpr
will use the first non-option argument as the program.

−V Causes the program to print version information and exit.

−? Causes the program to print usage information and exit.

OPERANDS
The following operand is supported:

files Names of files containing 1 or more graphs in the dot language.If no -f option is given, the first
name is removed from the list and used as the input program. If the list of files is empty, stdin
will be used.

PROGRAMS
A gvpr program consists of a list of predicate-action clauses, having one of the forms:

BEGIN { action }

BEG_G { action }

N [predicate] { action }

E [predicate] { action }

1 November 2005 1

GVPR(1) GVPR(1)

END_G { action }

END { action }

A program can contain at most one of each of theBEGIN , BEG_G, END_G andEND clauses. Therecan
be any number ofN andE statements, the first applied to nodes, the second to edges. The top-level seman-
tics of agvpr program are:

Evaluate theBEGIN clause, if any.
For each input graphG {

SetG as the current graph and current object.
Evaluate theBEG_G clause, if any.
For each node and edge inG {
Set the node or edge as the current object.
Evaluate theN or E clauses, as appropriate.

}
SetG as the current object.
Evaluate theEND_G clause, if any.

}
Evaluate theEND clause, if any.

The actions of theBEGIN , BEG_G, END_G andEND clauses are performed when the clauses are evalu-
ated. For N or E clauses, either the predicate or action may be omitted. If there is no predicate with an
action, the action is performed on every node or edge, as appropriate.If there is no action and the predicate
evaluates to true, the associated node or edge is added to the target graph.

Predicates and actions are sequences of statements in the C dialect supported by thelibexpr(3) library. The
only difference between predicates and actions is that the former must have a type that may interpreted as
either true or false. Herethe usual C convention is followed, in which a non-zero value is considered true.
This would include non-empty strings and non-empty references to nodes, edges, etc. However, if a string
can be converted to an integer, this value is used.

In addition to the usual C base types (void, int, char, float, long, unsigned and double),gvpr provides string
as a synonym for char*, and the graph-based types node_t, edge_t, graph_t and obj_t.The obj_t type can
be viewed as a supertype of the other 3 concrete types; the correct base type is maintained dynamically.
Besides these base types, the only other supported type expressions are (associative) arrays.

Constants follow C syntax, but strings may be quoted with either"..." or ’...’ . In certain contexts, string val-
ues are interpreted as patterns for the purpose of regular expression matching.Patterns useksh(1) file
match pattern syntax.gvpr accepts C++ comments as well as cpp-type comments.For the latter, if a line
begins with a ’#’ character, the rest of the line is ignored.

A statement can be a declaration of a function, a variable or an array, or an executable statement. For decla-
rations, there is a single scope. Array declarations have the form:

type array[var]

where thevar is optional. As in C, variables and arrays must be declared. In particular, an undeclared vari-
able will be interpreted as the name of an attribute of a node, edge or graph, depending on the context.

Executable statements can be one of the following:
{ [statement ...] }
expression // commonlyvar = expression
if(expression) statement[elsestatement]
for(expression; expression; expression) statement
for(array [var]) statement
while(expression) statement
switch(expression) case statements
break [expression]
continue [expression]
retur n [expression]

1 November 2005 2

GVPR(1) GVPR(1)

Items in brackets are optional.

In the second form of thefor statement, the variablevar is set to each value used as an index in the speci-
fied array and then the associatedstatementis evaluated. Function definitions can only appear in the
BEGIN clause.

Expressions include the usual C expressions. Stringcomparisons using== and != treat the right hand
operand as a pattern.gvpr will attempt to use an expression as a string or numeric value as appropriate.

Expressions of graphical type (i.e., graph_t, node_t, edge_t, obj_t) may be followed by a field reference in
the form of.name. The resulting value is the value of the attribute namednameof the given object. Inaddi-
tion, in certain contexts an undeclared, unmodified identifier is taken to be an attribute name. Specifically,
such identifiers denote attributes of the current node or edge, respectively, in N andE clauses, and the cur-
rent graph inBEG_G andEND_G clauses.

As usual in thelibagraph(3) model, attributes are string-valued. Inaddition,gvpr supports certain pseudo-
attributes of graph objects, not necessarily string-valued. These reflect intrinsic properties of the graph
objects and cannot be set by the user.

head: node_t
the head of an edge.

tail : node_t
the tail of an edge.

name: string
the name of an edge, node or graph. The name of an edge has the form "<tail-name><edge-
op><head-name>[<key>]", where<edge-op>is "->" or "--" depending on whether the graph is
directed or not. The bracket part[<key>] only appears if the edge has a non-trivial key.

indegree: int
the indegree of a node.

outdegree: int
the outdegree of a node.

degree: int
the degree of a node.

root : graph_t
the root graph of an object. The root of a root graph is itself.

parent : graph_t
the parent graph of a subgraph. The parent of a root graph isNULL

n_edges: int
the number of edges in the graph

n_nodes: int
the number of nodes in the graph

directed : int
true (non-zero) if the graph is directed

strict : int
true (non-zero) if the graph is strict

BUILT-IN FUNCTIONS
The following functions are built intogvpr. Those functions returning references to graph objects return
NULL in case of failure.

Graphs and subgraph
graph(s : string, t : string) : graph_t

creates a graph whose name iss and whose type is specified by the stringt. Ignoring case, the
characters U, D, S, N have the interpretation undirected, directed, strict, and non-strict,

1 November 2005 3

GVPR(1) GVPR(1)

respectively. If t is empty, a directed, non-strict graph is generated.

subg(g : graph_t, s : string) : graph_t
creates a subgraph in graphg with names. If the subgraph already exists, it is returned.

isSubg(g : graph_t, s : string) : graph_t
returns the subgraph in graphg with names, if it exists, orNULL otherwise.

fstsubg(g : graph_t) : graph_t
returns the first subgraph in graphg, or NULL if none exists.

nxtsubg(sg: graph_t) : graph_t
returns the next subgraph aftersg, or NULL .

isDirect(g : graph_t) : int
returns true if and only ifg is directed.

isStrict(g : graph_t) : int
returns true if and only ifg is strict.

nNodes(g : graph_t) : int
returns the number of nodes ing.

nEdges(g : graph_t) : int
returns the number of edges ing.

Nodes
node(sg: graph_t, s : string) : node_t

creates a node in graphg of names. If such a node already exists, it is returned.

subnode(sg: graph_t, n : node_t) : node_t
inserts the noden into the subgraphg. Returns the node.

fstnode(g : graph_t) : node_t
returns the first node in graphg, or NULL if none exists.

nxtnode(n : node_t) : node_t
returns the next node aftern, or NULL .

isNode(sg: graph_t, s : string) : node_t
looks for a node in graphg of names. If such a node exists, it is returned. Otherwise,NULL is
returned.

Edges
edge(t : node_t, h : node_t, s : string) : edge_t

creates an edge with tail nodet, head nodeh and names. If the graph is undirected, the distinction
between head and tail nodes is unimportant. If such an edge already exists, it is returned.

subedge(g : graph_t, e : edge_t) : edge_t
inserts the edgee into the subgraphg. Returns the edge.

isEdge(t : node_t, h : node_t, s : string) : edge_t
looks for an edge with tail nodet, head nodeh and names. If the graph is undirected, the distinc-
tion between head and tail nodes is unimportant. If such an edge exists, it is returned. Otherwise,
NULL is returned.

fstout(n : node_t) : edge_t
returns the first out edge of noden.

nxtout(e : edge_t) : edge_t
returns the next out edge aftere.

fstin(n : node_t) : edge_t
returns the first in edge of noden.

1 November 2005 4

GVPR(1) GVPR(1)

nxtin (e : edge_t) : edge_t
returns the next in edge aftere.

fstedge(n : node_t) : edge_t
returns the first edge of noden.

nxtedge(e : edge_t, node_t) : edge_t
returns the next edge aftere.

Graph I/O
write (g : graph_t) : void

printsg in dot format onto the output stream.

writeG (g : graph_t, fname: string) : void
printsg in dot format into the filefname.

fwriteG (g : graph_t, fd : int) : void
printsg in dot format onto the open stream denoted by the integerfd.

readG(fname: string) : graph_t
returns a graph read from the filefname. The graph should be in dot format. If no graph can be
read,NULL is returned.

freadG(fd : int) : graph_t
returns the next graph read from the open streamfd. ReturnsNULL at end of file.

Graph miscellany
delete(g : graph_t, x : obj_t) : void

deletes objectx from graphg. If g is NULL , the function uses the root graph ofx. If x is a graph
or subgraph, it is closed unlessx is locked.

isIn(g : graph_t, x : obj_t) : int
returns true ifx is in subgraphg. If x is a graph, this indicates thatg is the immediate parent graph
of x.

clone(g : graph_t, x : obj_t) : obj_t
creates a clone of objectx in graphg. In particular, the new object has the same name/value
attributes and structure as the original object.If an object with the same key as x already exists, its
attributes are overlaid by those ofx and the object is returned. If an edge is cloned, both endpoints
are implicitly cloned. If a graph is cloned, all nodes, edges and subgraphs are implicitly cloned.If
x is a graph,g may beNULL , in which case the cloned object will be a new root graph.

copy(g : graph_t, x : obj_t) : obj_t
creates a copy of objectx in graphg, where the new object has the same name/value attributes as
the original object. If an object with the same key as x already exists, its attributes are overlaid by
those ofx and the object is returned. Note that this is a shallow copy. If x is a graph, none of its
nodes, edges or subgraphs are copied into the new graph. Ifx is an edge, the endpoints are created
if necessary, but they are not cloned.If x is a graph,g may beNULL , in which case the cloned
object will be a new root graph.

copyA(src : obj_t, tgt : obj_t) : int
copies the attributes of objectsrc to objecttgt, overwriting any attribute valuestgt may initially
have.

induce(g : graph_t) : void
extendsg to its node-induced subgraph extension in its root graph.

aget(src : obj_t, name: string) : string
returns the value of attributenamein objectsrc. This is useful for those cases whennameconflicts
with one of the keywords such as "head" or "root".ReturnsNULL on failure or if the attribute is
not defined.

1 November 2005 5

GVPR(1) GVPR(1)

aset(src : obj_t, name: string, value: string) : int
sets the value of attribute namein objectsrc to value. Returns 0 on success, non-zero on failure.
Seeagetabove.

getDflt(g : graph_t, kind : string, name: string) : string
returns the default value of attributenamein objects ing of the given kind. For nodes, edges, and
graphs,kind should be "N", "E", and "G", respectively. Returns NULL on failure or if the
attribute is not defined.

setDflt(g : graph_t, kind : string, name: string, value: string) : int
sets the default value of attributenameto valuein objects ing of the given kind. For nodes, edges,
and graphs,kind should be "N", "E", and "G", respectively. Returns 0 on success, non-zero on
failure. SeesetDflt above.

compOf(g : graph_t, n : node_t) : graph_t
returns the connected component of the graphg containing noden, as a subgraph ofg. The sub-
graph only contains the nodes. One can useinduceto add the edges. The function fails and returns
NULL if n is not ing. Connectivity is based on the underlying undirected graph ofg.

kindOf (obj : obj_t) : string
returns an indication of what kind of graph object is the argument. For nodes, edges, and graphs,
it returns should be "N", "E", and "G", respectively.

lock(g : graph_t, v : int) : int
implements graph locking on root graphs. If the integerv is positive, the graph is set so that future
calls todeletehave no immediate effect. If v is zero, the graph is unlocked. If there has been a call
to delete the graph while it was locked, the graph is closed.If v is negative, nothing is done. In all
cases, the previous lock value is returned.

Strings
sprintf (fmt : string, ...) : string

returns the string resulting from formatting the values of the expressions occurring afterfmt
according to theprintf (3) format fmt

gsub(str : string, pat : string) : string

gsub(str : string, pat : string, repl : string) : string
returnsstr with all substrings matchingpatdeleted or replaced byrepl, respectively.

sub(str : string, pat : string) : string

sub(str : string, pat : string, repl : string) : string
returnsstr with the leftmost substring matchingpat deleted or replaced byrepl, respectively. The
characters ’ˆ’ and ’$’ may be used at the beginning and end, respectively, of pat to anchor the pat-
tern to the beginning or end ofstr.

substr(str : string, idx : int) : string

substr(str : string, idx : int , len : int) : string
returns the substring ofstr starting at positionidx to the end of the string or of lengthlen, respec-
tively. Indexing starts at 0. Ifidx is negative or idx is greater than the length ofstr, a fatal error
occurs. Similarly, in the second case, iflen is negative or idx + len is greater than the length ofstr,
a fatal error occurs.

length(s : string) : int
returns the length of the strings.

index(s : string, t : string) : int
returns the index of the character in strings where the leftmost copy of string t can be found, or -1
if t is not a substring ofs.

1 November 2005 6

GVPR(1) GVPR(1)

match(s : string, p : string) : int
returns the index of the character in strings where the leftmost match of patternp can be found, or
-1 if no substring ofs matchesp.

canon(s : string) : string
returns a version ofs appropriate to be used as an identifier in a dot file.

xOf(s : string) : string
returns the string "x" i f s has the form "x,y", where bothx andy are numeric.

yOf(s : string) : string
returns the string "y" i f s has the form "x,y", where bothx andy are numeric.

llOf (s : string) : string
returns the string "llx,lly" i f s has the form "llx,lly,urx,ury", where all ofllx, lly, urx, and ury are
numeric.

urOf(s)
urOf (s : string) : string returns the string "urx,ury" i f s has the form "llx,lly,urx,ury", where all of
llx, lly, urx, andury are numeric.

sscanf(s : string, fmt : string, ...) : int
scans the strings, extracting values according to thesscanf(3) formatfmt. The values are stored
in the addresses following fmt, addresses having the form& v, wherev is some declared variable of
the correct type. Returns the number of items successfully scanned.

I/O
print (...) : void

print(expr, ...) prints a string representation of each argument in turn ontostdout, followed by a
newline.

printf (fmt : string, ...) : int

printf (fd : int , fmt : string, ...) : int
prints the string resulting from formatting the values of the expressions following fmt according to
the printf (3) format fmt. Returns 0 on success.By default, it prints onstdout. If the optional
integerfd is given, output is written on the open stream associated withfd.

scanf(fmt : string, ...) : int

scanf(fd : int , fmt : string, ...) : int
scans in values from an input stream according to thescanf(3) formatfmt. The values are stored
in the addresses following fmt, addresses having the form& v, wherev is some declared variable of
the correct type. By default, it reads fromstdin. If the optional integer fd is given, input is read
from the open stream associated withfd. Returns the number of items successfully scanned.

openF(s : string, t : string) : int
opens the files as an I/O stream. The string argumentt specifies how the file is opened. The argu-
ments are the same as for the C functionfopen(3). It returns an integer denoting the stream, or -1
on error.

As usual, streams 0, 1 and 2 are already open asstdin, stdout, and stderr, respectively. Since
gvpr may usestdin to read the input graphs, the user should avoid using this stream.

closeF(fd : int) : int
closes the open stream denoted by the integer fd. Streams 0,1 and 2 cannot be closed.Returns 0
on success.

readL(fd : int) : string
returns the next line read from the input streamfd. It returns the empty string "" on end of file.
Note that the newline character is left in the returned string.

1 November 2005 7

GVPR(1) GVPR(1)

Math
exp(d : double) : double

returns e to thedth power.

log(d : double) : double
returns the natural log ofd.

sqrt(d : double) : double
returns the square root of the doubled.

pow(d : double, x : double) : double
returnsd raised to thexth power.

cos(d : double) : double
returns the cosine ofd.

sin(d : double) : double
returns the sine ofd.

atan2(y : double, x : double) : double
returns the arctangent ofy/x in the range -pi to pi.

Miscellaneous
exit() : void

exit(v : int) : void
causesgvpr to exit with the exit codev. v defaults to 0 if omitted.

rand() : double
returns a pseudo-random double between 0 and 1.

srand() : int

srand(v : int) : int
sets a seed for the random number generator. The optional argument gives the seed; if it is omitted,
the current time is used. The previous seed value is returned.srand should be called before any
calls torand.

BUILT-IN VARIABLES
gvpr provides certain special, built-in variables, whose values are set automatically bygvpr depending on
the context. Except as noted, the user cannot modify their values.

$: obj_t
denotes the current object (node, edge, graph) depending on the context. It is not available in
BEGIN or END clauses.

$F : string
is the name of the current input file.

$G : graph_t
denotes the current graph being processed. It is not available inBEGIN or END clauses.

$O : graph_t
denotes the output graph. Before graph traversal, it is initialized to the target graph. After traversal
and any END_G actions, if it refers to a non-empty graph, that graph is printed onto the output
stream. Itis only valid inN, E andEND_G clauses. Theoutput graph may be set by the user.

$T : graph_t
denotes the current target graph. It is a subgraph of$G and is available only inN, E andEND_G
clauses.

$tgtname: string
denotes the name of the target graph. By default, it is set to "gvpr_result".If used multiple times
during the execution ofgvpr, the name will be appended with an integer. This variable may be set
by the user.

1 November 2005 8

GVPR(1) GVPR(1)

$tvroot : node_t
indicates the starting node for a (directed or undirected) depth-first traversal of the graph (cf.
$tvtype below). Thedefault value isNULL for each input graph.

$tvtype : tvtype_t
indicates how gvpr traverses a graph. At present, it can only take one of six values:TV_flat ,
TV_dfs, TV_fwd , TV_ref , TV_bfs, TV_ne, and TV_en. TV_flat is the default. Themeaning of
these values is discussed below.

ARGC : int
denotes the number of arguments specified by the-a argscommand-line argument.

ARGV : string array
denotes the array of arguments specified by the-a argscommand-line argument. Theith argument
is given by ARGV[i].

BUILT-IN CONSTANTS
There are several symbolic constants defined bygvpr.

NULL : obj_t
a null object reference, equivalent to 0.

TV_flat : tvtype_t
a simple, flat traversal, with graph objects visited in seemingly arbitrary order.

TV_ne : tvtype_t
a traversal which first visits all of the nodes, then all of the edges.

TV_en : tvtype_t
a traversal which first visits all of the edges, then all of the nodes.

TV_dfs : tvtype_t
a traversal of the graph using a depth-first search on the underlying undirected graph.To do the
traversal,gvpr will check the value of$tvroot. If this has the same value that it had previously (at
the start, the previous value is initialized toNULL .), gvpr will simply look for some unvisited
node and traverse its connected component. On the other hand, if$tvroot has changed, its con-
nected component will be toured, assuming it has not been previously visited or, if $tvroot is
NULL , the traversal will stop. Note that usingTV_dfs and$tvroot, it is possible to create an infi-
nite loop.

TV_fwd : tvtype_t
a traversal of the graph using a depth-first search on the graph following only forward arcs. In

TV_bfs : tvtype_t
a traversal of the graph using a bread-first search on the graph ignoring edge directions. See the
item onTV_dfs above for the role of$tvroot. libagraph(3), edges in undirected graphs are given
an arbitrary direction, which is used for this traversal. The choice of roots for the traversal is the
same as described forTV_dfs above.

TV_r ev : tvtype_t
a traversal of the graph using a depth-first search on the graph following only reverse arcs. Inliba-
graph(3), edges in undirected graphs are given an arbitrary direction, which is used for this traver-
sal. The choice of roots for the traversal is the same as described forTV_dfs above.

EXAMPLES
gvpr -i ’N[color=="blue"]’ file.dot

Generate the node-induced subgraph of all nodes with color blue.

gvpr -c ’N[color=="blue"]{color = "red"}’ file.dot

Make all blue nodes red.

BEGIN { int n, e; int tot_n = 0; int tot_e = 0; }
BEG_G {

1 November 2005 9

GVPR(1) GVPR(1)

n = nNodes($G);
e = nEdges($G);
printf ("%d nodes %d edges %s0, n, e, $G.name);
tot_n += n;
tot_e += e;

}
END { printf ("%d nodes %d edges total0, tot_n, tot_e) }

Version of the programgc.

gvpr -c ""

Equivalent tonop.

BEG_G { graph_t g = graph ("merge", "S"); }
E {
node_t h = clone(g,$.head);
node_t t = clone(g,$.tail);
edge_t e = edge(t,h,"");
e.weight = e.weight + 1;

}
END_G { $O = g; }

Produces a strict version of the input graph, where the weight attribute of an edge indicates how many
edges from the input graph the edge represents.

BEGIN {node_t n; int deg[]}
E{deg[head]++; deg[tail]++; }
END_G {
for (deg[n]) {
printf ("deg[%s] = %d0, n.name, deg[n]);

}
}

Computes the degrees of nodes with edges.

ENVIRONMENT
GPRPATH

Colon-separated list of directories to be searched to find the file specified by the -f option.

BUGS
When the program is given as a command line argument, the usual shell interpretation takes place, which
may affect some of the special names ingvpr. To avoid this, it is best to wrap the program in single quotes.

The constantsTV_flat , TV_dfs, TV_fwd , andTV_r ev

There is a single global scope, except for formal function parameters, and even these can interfere with the
type system. Also, the extent of all variables is the entire life of the program. It might be preferable for
scope to reflect the natural nesting of the clauses, or for the program to at least reset locally declared vari-
ables. For now, it is advisable to use distinct names for all variables.

If a function ends with a complex statement, such as an IF statement, with each branch doing a return, type
checking may fail. Functionsshould use a return at the end.

The expr library does not support string values of (char*)0. This means we can’t distinguish between ""
and (char*)0 edge keys. For the purposes of looking up and creating edges, we translate "" to be (char*)0,
since this latter value is necessary in order to look up any edge with a matching head and tail.

The language inherits the usual C problems such as dangling references and the confusion between ’=’ and
’==’.

1 November 2005 10

GVPR(1) GVPR(1)

AUTHOR
Emden R. Gansner <erg@research.att.com>

SEE ALSO
awk(1), gc(1), dot(1), nop(1), libexpr(3), libagraph(3)

1 November 2005 11

