
Defining and Instantiating Structs	1
An Example Program Using Structs	3
Refactoring with Tuples	4
Refactoring with Structs: Adding More Meaning	5
Adding Useful Functionality with Derived Traits	6
Method Syntax	9
Defining Methods	9
Methods with More Parameters	11
Associated Functions	12
Summary	13

Chapter 5
Using Structs to Structure Related Data	Comment by janelle: Au: Can we have a more than one-word chapter title?
A struct, short for or structure, is a custom data type that lets us name and package together multiple related values that make up a meaningful group. If you’re familiar with come from an object-oriented language, a struct is like an object’s data attributes. In this chapter, we'll compare and contrast tuples with structs, demonstrate how to use structs, and discuss how to define methods and associated functions on structs to specify behavior associated with a struct's dataIn the next section of this chapter, weyou’ll talk about learn how to define methods on your structs;: methods are how you specify the behavior that goes along withis associated with a struct’s data. . The struct and enum (that we will talk about which is discussed in Chapter 6) concepts are the building blocks for creating new types in your program’s domain in order to take full advantage of Rust’s compile -time type checking.
Prod: link xref
Defining and Instantiating Structs
Prod: link xrefxref
One way of thinking about sStructs is that they are similar to tuples, which were talkdiscussed about in Chapter 3. Like tuples, the pieces of a struct can be different types. Unlike tuples, we name each piece of data so that it’s clearer what the values mean. Structs are more flexible Aas a result of these names, structs are more flexible than tuples: we don’t have to rely on the order of the data to specify or access the values of an instance.
Prod: link xref
To define a struct, we enter the keyword struct and namegive the wholeentire struct a name. A struct’s name should describe what the significance is of these pieces of data being grouped together. Then, inside curly braces, we define the names and types of the pieces of data, which we call fields, and specify each field’s type. For example, Listing 5-1 shows a struct to store information about a user account:	Comment by Carol Nichols: A field is a piece of the struct; in the way I think about it, it's a named spot for a value of a particular type, so a field is defined by both its name and its type. I've reworded to hopefully clarify.
struct User {
 username: String,
 email: String,
 sign_in_count: u64,
 active: bool,
}
Listing 5-1: A User struct definition
To use a struct onceafter we’'ve defined it, we create an instance of that struct by specifying concrete values for each of the fields. We Ccreateing an instance is done by stating the name of the struct, and then add curly braces withcontaining key: value pairs inside it where the keys are the names of the fields and the values are the data we want to store in those fields. We don’t have to specify Tthe fields don’t have to be specified in the same order in which we declared them in the struct declared them. In other words, the struct definition is like a general template for the type, and instances fill in that template with particular data to create values of the type. For example, we can declare a particular user like thisas shown in Listing 5-2:
let user1 = User {
 email: String::from("someone@example.com"),
 username: String::from("someusername123"),
 active: true,
 sign_in_count: 1,
};
Listing 5-2: Creating an instance of the User struct
To get a particularspecific value out offrom a struct, we can use dot notation. If we wanted just this user’s email address, we can sayuse user1.email wherever we want to use this value. To change a value in a struct, if the instance is mutable, we can use the dot notation and assign into a particular field, such as user1.email = String::from(""" "oetuhonthutaeohu some");.	Comment by AnneMarieW: Au: Where would you say this?
Field Init Shorthand when Variables Have the Same Name as Fields
If you have variables with the same names as struct fields, you can use field init shorthand. This can make functions that create new instances of structs more concise. The function named build_user shown here in Listing 5-3 has parameters named email and username. The function creates and returns a User instance:
fn build_user(email: String, username: String) -> User {
 User {
 email: email,
 username: username,
 active: true,
 sign_in_count: 1,
 }
}
Listing 5-3: A build_user function that takes an email and username and returns a User instance
Because the parameter names email and username are the same as the User struct's field names email and username, we can write build_user without the repetition of email and username as shown in Listing 5-4. This version of build_user behaves the same way as the one in Listing 5-3. The field init syntax can make cases like this shorter to write, especially when structs have many fields.
fn build_user(email: String, username: String) -> User {
 User {
 email,
 username,
 active: true,
 sign_in_count: 1,
 }
}
Listing 5-4: A build_user function that uses field init syntax since the email and username parameters have the same name as struct fields
Creating Instances From Other Instances With Struct Update Syntax
It's often useful to create a new instance from an old instance, using most of the old instance's values but changing some. Listing 5-5 shows an example of creating a new User instance in user2 by setting the values of email and username but using the same values for the rest of the fields from the user1 instance we created in Listing 5-2:
let user2 = User {
 email: String::from("a"),
 username: String::from("anotherusername567"),
 active: user1.active,
 sign_in_count: user1.sign_in_count,
};
Listing 5-5: Creating a new User instance, user2, and setting some fields to the values of the same fields from user1

 The struct update syntax achieves the same effect as the code in Listing 5-5 using less code. The struct update syntax uses .. to specify that the remaining fields not set explicitly should have the same value as the fields in the given instance. The code in Listing 5-6 also creates an instance in user2 that has a different value for email and username but has the same values for the active and sign_in_count fields that user1 has:
let user2 = User {
 email: String::from("another@example.com"),
 username: String::from("anotherusername567"),
 ..user1
};
Listing 5-6: Using struct update syntax to set a new email and username values for a User instance but use the rest of the values from the fields of the instance in the user1 variable
Tuple Structs without Named Fields to Create Different Types
We can also define structs that look similar to tuples, called tuple structs, that have the added meaning the struct name provides, but don't have names associated with their fields, just the types of the fields. The definition of a tuple struct still starts with the struct keyword and the struct name, which are followed by the types in the tuple. For example, here are definitions and usages of tuple structs named Color and Point:
struct Color(i32, i32, i32);
struct Point(i32, i32, i32);

let black = Color(0, 0, 0);
let origin = Point(0, 0, 0);
Note that the black and origin values are different types, since they're instances of different tuple structs. Each struct we define is its own type, even though the fields within the struct have the same types. Otherwise, tuple struct instances behave like tuples, which we covered in Chapter 3.
Prod: Check xref
Unit-Like Structs without Any Fields
We can also define structs that don't have any fields! These are called unit-like structs since they behave similarly to (), the unit type. Unit-like structs can be useful in situations such as when you need to implement a trait on some type, but you don't have any data that you want to store in the type itself. We'll be discussing traits in Chapter 10.
Prod: Check xref
Start box
Ownership of Struct Data	Comment by NSP : Au: I'd suggest putting this in a box, since we are letting them know that we will explain this in future and not explaining it now
In the User struct definition in Listing 5-1, we used the owned String type rather than the &str string slice type. This is a deliberate choice because we want instances of this struct to own all of its data, and for that data to be valid for as long as the entire struct is valid.
It i’s possible for structs to store references to data owned by something else, but to do so requires the use of lifetimes, a Rust feature of Rust that we'llis discussed in Chapter 10. Lifetimes ensure that the data a struct referenced by a structs is valid for as long as the struct is. Let’s sIfay you try to store a reference in a struct without specifying lifetimes, like this:
Filename: src/main.rs
Prod: Check xref
struct User {
 username: &str,
 email: &str,
 sign_in_count: u64,
 active: bool,
}

fn main() {
 let user1 = User {
 email: "someone@example.com",
 username: "someusername123",
 active: true,
 sign_in_count: 1,
 };
}
The compiler will complain that it needs lifetime specifiers:
error[E0106]: missing lifetime specifier
 -->
 |
2 | username: &str,
 | ^ expected lifetime parameter

error[E0106]: missing lifetime specifier
 -->
 |
3 | email: &str,
 | ^ expected lifetime parameter
We wi'’ll talk about discuss how to fix these errors in order so that you can to store references in structs in Chapter 10, but for now, we’'ll fix errors like these by switching to using owned types like String instead of references like &str.
End box
[bookmark: _Toc477248805][bookmark: __RefHeading___Toc7029_308490998][bookmark: an-example-program]An Example Program Using Structs
To understand when we might want to use structs, let’s write a program that calculates the area of a rectangle. We’ll start off with single variables, and then refactor ourthe program until we’re using structs instead.
Let’s make a new binary project with Cargo called rectangles that will take the length and width of a rectangle specified in pixels and will calculate the area of the rectangle. Listing 5-27 has shows a short program with one way of doing just that in our project’s src/main.rs:
Filename: src/main.rs
fn main() {
 let length1 = 50;
 let width1 = 30;

 println!(
 "The area of the rectangle is {} square pixels.",
 area(length1, width1)
);
}

fn area(length: u32, width: u32) -> u32 {
 length * width
}
Listing 5-27: Calculating the area of a rectangle specified by its length and width in separate variables
Now, Let’s try rRrunning this program withusing cargo run:
The area of the rectangle is 1500 square pixels.
[bookmark: __RefHeading___Toc7031_308490998][bookmark: _Toc477248806][bookmark: refactoring-with-tuples]Refactoring with Tuples
Even though Listing 5-2Our little program works okay; it7 works and figures out the area of the rectangle by calling the area function with each dimension., But we can do better. The length and the width are related to each other sincbecause together they describe one rectangle.
The issue with this method is evident in the signature of area:
fn area(length: u32, width: u32) -> u32 {
The area function is supposed to calculate the area of one rectangle, but ourthe function we’re using wrote takeshas two argumentsparameters. The argumentsparameters are related, but that’s not expressed anywhere in our program itself. It would be more readable and more manageable to group length and width together.
We’ve already discussed one way we might do that in the Grouping Values into Tuples section of Chapter 3: tuples on page XX: by using tuples. Listing 5-38 shows anotherhas a version of our program which that uses tuples:
Prod: link xref
Filename: src/main.rs
fn main() {
 let rect1 = (50, 30);

 println!(
 "The area of the rectangle is {} square pixels.",
 area(rect1)
);
}

fn area(dimensions: (u32, u32)) -> u32 {
 dimensions.0 * dimensions.1
}
Listing 5-38: Specifying the length and width of the rectangle with a tuple
[bookmark: _GoBack]In one way, this program is a little better. Tuples let us add a bit of structure, and we’re now passing just one argument . But in another way this methodversion is less clear: tuples don’t give names to their elements, so our calculation has gottenbecome more confusing because we have to index into the parts of the tuple .
It doesn’t matter if we mix up length and width for the area calculation, but if we wereant to draw the rectangle on the screen, it would matter! We would have to remember keep in mind that length wais the tuple index 0 and width wais the tuple index 1. If someone else was to worked on this code, they would have to figure this out and rememberkeep it in mind as well. It would be easy to forget or mix up these values up and cause errors, sincbecause we haven’t conveyed the meaning of our data in our code.
[bookmark: __RefHeading___Toc7033_308490998][bookmark: _Toc477248807][bookmark: refactoring-with-structs:-adding-more-me]Refactoring with Structs: Adding More Meaning
Here is where wWe bring inuse structs to add more meaning by labeling the data. We can transform ourthe tuple we’re using into a data type with a name for the whole as well as names for the parts, as shown in Listing 5-49:
Filename: src/main.rs
struct Rectangle {
 length: u32,
 width: u32,
}

fn main() {
 let rect1 = Rectangle { length: 50, width: 30 };

 println!(
 "The area of the rectangle is {} square pixels.",
 area(&rect1)
);
}

 fn area(rectangle: &Rectangle) -> u32 {
 rectangle.length * rectangle.width
}
Listing 5-49: Defining a `Rectangle` struct
Here we’ve defined a struct and given it the named it Rectangle . Inside the {} we defined the fields to beas length and width, both of which have type u32. Then in main, we create a particular instance of a Rectangle that has a length of 50 and a width of 30 .
Our area function is now defined with now takes one argumentparameter, thatwhich we’ve named rectangle, whose type is an immutable borrow of a struct Rectangle instance . As we covered mentioned in Chapter 4, we want to borrow the struct rather than take ownership of it;. tThis way, so that main keepsretains its ownership and can continue using rect1, so that’s why which is the reason we haveuse the & in the function signature and at the call site.where we call the function.
Prod: link xref
The area function accesses the length and width fields of the Rectangle instance it gotreceived as an argument . Our function signature for area now sayindicates exactly what we mean: calculate the area of a Rectangle, using its length and width fields. This conveys that the length and width are related to each other, and gives descriptive names to the values rather than using the tuple index values of 0 and 1. This is— a win for clarity.
[bookmark: __RefHeading___Toc7035_308490998][bookmark: _Toc477248808][bookmark: adding-useful-functionality-with-derived]Adding Useful Functionality with Derived Traits
It’ would be niceideal to be able helpful to be able to print out an instance of ourthe Rectangle while we’re debugging our program andin order to see the values for all its fields. Listing 5-510 tries usesing the `println!` macro as we have been in earlier chapters:	Comment by Carol Nichols: Yes, I mean as we have been throughout chapters 2, 3, and 4.
[bookmark: __DdeLink__16320_308490998]Filename: src/main.rs
struct Rectangle {
 length: u32,
 width: u32,
}

fn main() {
 let rect1 = Rectangle { length: 50, width: 30 };

 println!("rect1 is {}", rect1);
}
Listing 5-510: Attempting to print a `Rectangle` instance
IfWhen we run this code, we get an error with this core message:
error[E0277]: the trait bound `Rectangle: std::fmt::Display` is not satisfied
The println! macro can do many kinds of formatting, and by default, {} tells println! to use formatting known as Display: output intended for direct end- user consumption. The primitive types we’ve seen so far implement Display by default, asbecause there’s only one way you’d want to show a 1 or any other primitive type to a user. But with structs, the way println! should format the output is less clear asbecause there are more display possibilities: dDo you want commas or not? Do you want to print the struct {}curly braces{}? Should all the fields be shown? Because of Due to this ambiguity, Rust doesn’t try to guess what we want and structs do no’t have a provided implementation of Display.
If we keepcontinue reading the errors, though, we’ll find this helpful note:
note: `Rectangle` cannot be formatted with the default formatter; try using
`:?` instead if you are using a format string
Let’s try it! The println! macro call will now look like println!("rect1 is {:?}", rect1);. Putting the specifier :? inside the {} tells println! we want to use an output format called Debug. Debug is a trait that enables us to print out our struct in a way that is useful for developers so that we can see its value while we a’re debugging our code.
Let’s try rRunning the code with this change. and… dDrat.! We still get an error:
error: the trait bound `Rectangle: std::fmt::Debug` is not satisfied
But aAgain, though, the compiler has givesn us a helpful note!:
note: `Rectangle` cannot be formatted using `:?`; if it is defined in your
crate, add `#[derive(Debug)]` or manually implement it
Rust does include functionality to print out debugging information, but we have to explicitly opt-in to having make that functionality be available for our struct. To do that, we add the annotation #[derive(Debug)] just before ourthe struct definition, as shown in Listing 5-611:
Filename: src/main.rs
#[derive(Debug)]
struct Rectangle {
 length: u32,
 width: u32,
}

fn main() {
 let rect1 = Rectangle { length: 50, width: 30 };

 println!("rect1 is {:?}", rect1);
}
Listing 5-611: Adding the annotation to derive the Debug trait and printing the Rectangle instance using debug formatting
At this point, if Now when we run thise program, we won’t get any errors and we’ll see the following output:
rect1 is Rectangle { length: 50, width: 30 }
Nice! It’s not the prettiest output, but it shows the values of all the fields for this instance, which would definitely help during debugging. that is a bit prettier and easier to read, which can be helpful with If we want outputWhen we have larger structs, it’s can be useful to have output that’'s a bit prettier and easier to read; in those cases, we can use {:#?} in placestead of {:?} in the println! string. IfWhen we use the pretty debug {:#?} style in thise example, the output will look like this:
rect1 is Rectangle {	Comment by janelle: Au: Please confirm the style is supposed to be different in this code block.
 length: 50,
 width: 30
}
There are a number of traits Rust has provided a number of traits for us to use with the derive annotation that can add useful behavior to our custom types. Those traits and their behaviors are listed in Appendix C. We’ll be covering how to implement these traits with custom behavior, as well as how to createing your own traits, in Chapter 10.
Prod: confirm xrefs to App C and 10
Our area function is prettvery specific: —it only computes the area of rectangles. It would be nice helpful to tie this behavior together more closely withto our Rectangle struct, sincbecause it won't work with any other typeour Rectangle type it’s behavior that our Rectangle type has this behavior specifically. Let’s now look at how we can continue to refactor this code by turning the area function into an area method defined on our Rectangle type.
[bookmark: __RefHeading___Toc7037_308490998][bookmark: _Toc477248809][bookmark: method-syntax]Method Syntax
Methods are similar to functions: they’re declared with the fn keyword and their name,;, they can takehave argumentsparameters and return values,;, and they contain some code that getis run when they’re called from somewhere else. However, mMethods are different from functions, however, because in that they’re defined within the context of a struct (or an enum or a trait object, which we will cover in Chapters 6 and 137, respectively), and their first argumentparameter is always self, which represents the instance of the struct that the method is being called on.
Prod: Check xref to 137, link 6
[bookmark: __RefHeading___Toc7039_308490998][bookmark: _Toc477248810][bookmark: defining-methods]Defining Methods
Let’s change ourthe area function that takeshas a Rectangle instance as an argument parameter and instead make an area method defined on the Rectangle struct, as shown in Listing 5-712:
Filename: src/main.rs
#[derive(Debug)]
struct Rectangle {
 length: u32,
 width: u32,
}

 impl Rectangle {
 fn area(&self) -> u32 {
 self.length * self.width
 }
}

fn main() {
 let rect1 = Rectangle { length: 50, width: 30 };

 println!(
 "The area of the rectangle is {} square pixels.",
 rect1.area()
);
}
Listing 5-712: Defining an area method on the Rectangle struct
In order tTo make the function be defined define the function within the context of Rectangle, we start an impl (implementation) block (impl is short for implementation). Then we move the area function within the impl curly braces , and change the first (and in this case, only) argumentparameter to be self in the signature and everywhere within the body. Then iIn main where we called the area function and passed rect1 as an argument, we can instead use method syntax to call the area method on our Rectangle instance . The Mmethod syntax is and taking an instance simply goes after an instance: we addsing a dot followed by the method name, parentheses, and any arguments to an instance.
In the signature for area, we get to use &self instead of rectangle: &Rectangle because Rust knows the type of self is Rectangle due to this method being inside the impl Rectangle context. Note that we still need to haveuse the & before self, just like we haddid in &Rectangle. Methods can choose to take ownership of self, borrow self immutably as we’ve done here, or borrow self mutably, just like any other argumentparameter.
We’ve chosen &self here for the same reason we used &Rectangle in the function version: we don’t want to take ownership, and we just want to be able to read the data in the struct, not write to it. If we wanted to be able to change the instance that we’ve called the method on as part of what the method does, we’d putuse &mut self as the first argument insteadparameter. Having a method that takes ownership of the instance by havusing just self as the first argumentparameter is rarer; this technique is usually used when the method transforms self into something else and we want to prevent the caller from using the original instance after the transformation.
The main benefit of using methods overinstead of functions, in addition to getting to useing method syntax and not having to repeat the type of self in every method’s signature, is for organization. We’ve put all the things we can do with an instance of a type together in one impl block, rather than makinge future users of our code search for capabilities of Rectangle in various places allin the library we provide over the place.
PROD: START BOX
[bookmark: _Toc477248811][bookmark: where's-the-`->`-operator?]Where’s the -> Operator?
In languages like C++, there are two different operators are used for calling methods: you use . if you’re calling a method on the object directly, and -> if you’re calling the method on a pointer to the object and thus need to dereference the pointer first. In other words, if object is a pointer, object->something() is likesimilar to (*object).something().
Rust doesn’t have an equivalent to the -> operator; instead, Rust has a feature called automatic referencing and dereferencing. Calling methods is one of the few places in Rust that has this behavior like this.
Here’s how it works: when you call a method with object.something(), Rust will automatically adds in &, &mut, or * so that object matches the signature of the method. In other words, these following are the same:
p1.distance(&p2);
(&p1).distance(&p2);
The first one looks much, much cleaner. This automatic referencing behavior works because methods have a clear receiver — the type of self. Given the receiver and name of a method, Rust can figure out definitively whether the method is just reading (so needs &self), mutating (so &mut self), or consuming (so self). The fact that Rust makes borrowing implicit for method receivers is a big part of making ownership ergonomic in practice.
PROD: END BOX
[bookmark: __RefHeading___Toc7041_308490998][bookmark: _Toc477248812][bookmark: methods-with-more-arguments]Methods with More ArgumentParameters
Let’s practice some more with using methods by implementing a second method on ourthe Rectangle struct. This time, we’d like for want an instance of Rectangle to take another instance of Rectangle and return true if the second rRectangle couldan fit completely within self; and returnotherwise it should return false if it would cannot. That is, if we runwe want to be able to write the program shown in the code in Listing 5-813, onceafteronce we’'ve defined the can_hold method:	Comment by janelle: Au: maybe rephrase to: “This time, we want an instance of Rectangle to take another instance of Rectangle and return true if the second Rectangle can fit completely within self; otherwise it should return false.”? I found this sentence a bit long—the semicolon helps split it up.	Comment by janelle: Au: Should this be literal and capitalized, like other instances of Rectangle?	Comment by AnneMarieW: Au: This sentence seems to leave the reader hanging and is somewhat confusing. Perhaps reword this sentence to "We'll run the code in Listing 5-8 after we’ve defined the can_hold method:"
Filename: src/main.rs
fn main() {
 let rect1 = Rectangle { length: 50, width: 30 };
 let rect2 = Rectangle { length: 40, width: 10 };
 let rect3 = Rectangle { length: 45, width: 60 };

 println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2));
 println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3));
}
Listing 5-813: Demonstration of using the as-yet-unwritten can_hold method	Comment by AnneMarieW: Au: This code demonstrates the can_hold method?
And the expected output would look like the followingWe want to see thise following output, sincbecause both dimensions of rect2’s dimensions are smaller than the dimensions of rect1’s, but rect3 is wider than rect1:
Can rect1 hold rect2? true
Can rect1 hold rect3? false
We know we want to define a method, so it will be within the impl Rectangle block. The method name will be can_hold, and it will take an immutable borrow of another Rectangle as an argument parameter. We can tell what the type of the argumentparameter will be by looking at a call sitethe code that calls the method: rect1.can_hold(&rect2) passes in &rect2, which is an immutable borrow to rect2, an instance of Rectangle. This makes sense, sincbecause we only need to read rect2 (rather than write, which would mean we’d need a mutable borrow), and we want main to keepretain ownership of rect2 so that we couldan use it again after calling thise can_hold method. The return value of can_hold will be a boolean, and the implementation will check to see if whether the length and width of self’s length and width are both greater than the length and width of the other Rectangle, respectively. Let’s add thise new can_hold method to the impl block from Listing 5-712, shown in Listing 5-14:	Comment by janelle: Au: Would it be better to introduce the can_hold method before using it in an example?
Filename: src/main.rs
impl Rectangle {
 fn area(&self) -> u32 {
 self.length * self.width
 }

 fn can_hold(&self, other: &Rectangle) -> bool {
 self.length > other.length && self.width > other.width
 }
}
Listing 5-14: Implementing the can_hold method on Rectangle that takes another Rectangle instance as a parameter
If When we run this code with the main fromfunction in Listing 5-813, we wi’ll get our desired output!. Methods can take multiple argumentparameters that we add to the signature after the self parameter, and those argumentparameters work just like argumentparameters in functions do.	Comment by AnneMarieW: Au: with the main function?
[bookmark: __RefHeading___Toc7043_308490998][bookmark: _Toc477248813][bookmark: associated-functions]Associated Functions
One more Another useful feature of impl blocks: is that we’re allowed to define functions within impl blocks that don’t take self as a parameter. These are called associated functions, sincbecause they’re associated with the struct. They’re still functions though, not methods, sincbecause they don’t have an instance of the struct to work with. You’ve already used anthe String::from associated function: String::from.
Associated functions are often used for constructors that will return a new instance of the struct. For example, we could provide an associated function that would takehave one dimension argumentparameter and use that as both length and width, thus making it easier to create a square Rectangle rather than having to specify the same value twice:
Filename: src/main.rs
impl Rectangle {
 fn square(size: u32) -> Rectangle {
 Rectangle { length: size, width: size }
 }
}
To call this associated function, we use the :: syntax with the struct name:, like let sq = Rectangle::square(3);, for example. This function is namespaced by the struct: the :: syntax is used for both associated functions and namespaces created by modules, which weyou’ll learn aboutwe'll discuss in Chapter 7.
de/au: to revisist the namespace explanation in Ch 7
Prod: check xref
[bookmark: __RefHeading___Toc7045_308490998][bookmark: _Toc477248814][bookmark: summary]Summary
Structs let us create custom types that are meaningful for our domain. By using structs, we can keep associated pieces of data connected to each other and name each piece to make our code clear. Methods let us specify the behavior that instances of our structs have, and associated functions let us namespace functionality that is particular to our struct without having an instance available.
But Sstructs aren’t the only way we can create custom types, though;: let’s turn to Rust’sthe enum feature of Rust and to add another tool to our toolbox.
