
LIBCDT(3) LIBCDT(3)

NAME
Cdt − container data types

SYNOPSIS
#include <cdt.h>

DICTIONAR Y TYPES
Void_t*;
Dt_t;
Dtdisc_t;
Dtmethod_t;
Dtlink_t;
Dtstat_t;

DICTIONAR Y CONTROL
Dt_t* dtopen(const Dtdisc_t* disc, const Dtmethod_t* meth);
int dtclose(Dt_t* dt);
void dtclear(dt);
Dtmethod_t* dtmethod(Dt_t* dt, const Dtmethod_t* meth);
Dtdisc_t* dtdisc(Dt_t* dt, const Dtdisc_t* disc, int type);
Dt_t* dtview(Dt_t* dt, Dt_t* view);
int dttreeset(Dt_t* dt, int minp, int balance);

STORAGE METHODS
Dtmethod_t* Dtset;
Dtmethod_t* Dtbag;
Dtmethod_t* Dtoset;
Dtmethod_t* Dtobag;
Dtmethod_t* Dtlist;
Dtmethod_t* Dtstack;
Dtmethod_t* Dtqueue;
Dtmethod_t* Dtdeque;

DISCIPLINE
#define DTOFFSET(struct_s,member)
#define DTDISC(disc,key,size,link,makef,freef,comparf,hashf,memoryf,eventf)
typedef Void_t* (*Dtmake_f)(Dt_t*, Void_t*, Dtdisc_t*);
typedef void (*Dtfree_f)(Dt_t*, Void_t*, Dtdisc_t*);
typedef int (*Dtcompar_f)(Dt_t*, Void_t*, Void_t*, Dtdisc_t*);
typedef unsigned int (*Dthash_f)(Dt_t*, Void_t*, Dtdisc_t*);
typedef Void_t* (*Dtmemory_f)(Dt_t*, Void_t*, size_t, Dtdisc_t*);
typedef int (*Dtevent_f)(Dt_t*, int, Void_t*, Dtdisc_t*);

OBJECT OPERATIONS
Void_t* dtinsert(Dt_t* dt, Void_t* obj);
Void_t* dtappend(Dt_t* dt, Void_t* obj);
Void_t* dtdelete(Dt_t* dt, Void_t* obj);
Void_t* dtattach(Dt_t* dt, Void_t* obj);
Void_t* dtdetach(Dt_t* dt, Void_t* obj);
Void_t* dtsearch(Dt_t* dt, Void_t* obj);
Void_t* dtmatch(Dt_t* dt, Void_t* key);
Void_t* dtfirst(Dt_t* dt);
Void_t* dtnext(Dt_t* dt, Void_t* obj);
Void_t* dtlast(Dt_t* dt);
Void_t* dtprev(Dt_t* dt, Void_t* obj);
Void_t* dtfinger(Dt_t* dt);
Void_t* dtrenew(Dt_t* dt, Void_t* obj);
int dtwalk(Dt_t* dt, int (*userf)(Dt_t*, Void_t*, Void_t*), Void_t*);

1

LIBCDT(3) LIBCDT(3)

Dtlink_t* dtflatten(Dt_t* dt);
Dtlink_t* dtlink(Dt_t*, Dtlink_t* link);
Void_t* dtobj(Dt_t* dt, Dtlink_t* link);
Dtlink_t* dtextract(Dt_t* dt);
int dtrestore(Dt_t* dt, Dtlink_t* link);

#define DTTREESEARCH(Dt_t* dt, Void_t* obj, action)
#define DTTREEMATCH(Dt_t* dt, Void_t* key, action)

DICTIONAR Y STATUS
Dt_t* dtvnext(Dt_t* dt);
int dtvcount(Dt_t* dt);
Dt_t* dtvhere(Dt_t* dt);
int dtsize(Dt_t* dt);
int dtstat(Dt_t* dt, Dtstat_t*, int all);

HASH FUNCTIONS
unsigned int dtstrhash(unsigned int h, char* str, int n);
unsigned int dtcharhash(unsigned int h, unsigned char c);

DESCRIPTION
Cdt manages run-time dictionaries using standard container data types: unordered set/multiset, ordered
set/multiset, list, stack, and queue.

DICTIONAR Y TYPES
Void_t*

This type is used to pass objects betweenCdt and application code.Void_t is defined asvoid for ANSI-
C and C++ andchar for other compilation environments.

Dt_t
This is the type of a dictionary handle.

Dtdisc_t
This defines the type of a discipline structure which describes object lay-out and manipulation functions.

Dtmethod_t
This defines the type of a container method.

Dtlink_t
This is the type of a dictionary object holder (seedtdisc().)

Dtstat_t
This is the type of a structure to return dictionary statistics (seedtstat().)

DICTIONAR Y CONTROL
Dt_t* dtopen(const Dtdisc_t* disc, const Dtmethod_t* meth)

This creates a new dictionary. disc is a discipline structure to describe object format.meth specifies a
manipulation method.dtopen() returns the new dictionary or NULL on error. See also the events
DT_OPEN andDT_ENDOPEN below.

int dtclose(Dt_t* dt)
This deletesdt and its objects. Note thatdtclose() fails if dt is being viewed by some other dictionar-
ies (seedtview()). dtclose() returns0 on success and-1 on error. See also the eventsDT_CLOSE
andDT_ENDCLOSE below.

void dtclear(Dt_t* dt)
This deletes all objects indt without closingdt.

Dtmethod_t dtmethod(Dt_t* dt, const Dtmethod_t* meth)
If meth is NULL, dtmethod() returns the current method. Otherwise, it changes the storage method of
dt to meth. Object order remains the same during a method switch amongDtlist, Dtstack,
Dtqueue and Dtdeque. Switching to and fromDtset/Dtbag and Dtoset/Dtobag may cause

2

LIBCDT(3) LIBCDT(3)

objects to be rehashed, reordered, or removed as the case requires.dtmethod() returns the previous
method orNULL on error.

Dtdisc_t* dtdisc(Dt_t* dt, const Dtdisc_t* disc, int type)
If disc is NULL, dtdisc() returns the current discipline. Otherwise, it changes the discipline ofdt to
disc. Objects may be rehashed, reordered, or removed as appropriate.type can be any bit combination
of DT_SAMECMP andDT_SAMEHASH. DT_SAMECMP means that objects will compare exactly the same
as before thus obviating the need for reordering or removing new duplicates.DT_SAMEHASH means that
hash values of objects remain the same thus obviating the need to rehash.dtdisc() returns the previous
discipline on success andNULL on error.

Dt_t* dtview(Dt_t* dt, Dt_t* view)
A viewpath allows a search or walk starting from a dictionary to continue to another. dtview() first ter-
minates any current view fromdt to another dictionary. Then, ifview is NULL, dtview returns the ter-
minated view dictionary. If view is notNULL, a viewpath fromdt to view is established.dtview()
returnsdt on success andNULL on error.

It is an error to have dictionaries on a viewpath with different storage methods. In addition, dictionaries on
the same view path should treat objects in a consistent manner with respect to comparison or hashing.If
not, undefined behaviors may result.

int dttreeset(Dt_t* dt, int minp, int balance)
This function only applies to dictionaries operated under the methodDtoset which uses top-down splay
trees (see below). It returns 0 on success and -1 on error.

minp: This parameter defines the minimum path length before a search path is adjusted.For example,
minp equal 0 would mean that search paths are always adjusted.If minp is negative, the mini-
mum search path is internally computed based on a function of the current dictionary size. This
computed value is such that if the tree is balanced, it will never require adjusting.

balance:
If this is non-zero, the tree will be made balanced.

STORAGE METHODS
Storage methods are of typeDtmethod_t*. Cdt supports the following methods:

Dtoset
Dtobag

Objects are ordered by comparisons.Dtoset keeps unique objects.Dtobag allows repeatable objects.

Dtset
Dtbag

Objects are unordered.Dtset keeps unique objects.Dtbag allows repeatable objects and always keeps
them together (note the effect on dictionary walking.) Thesemethods use a hash table with chaining to
manage the objects. See also the event DT_HASHSIZE below on how to manage hash table resizing when
objects are inserted.

Dtlist
Objects are kept in a list. The calldtinsert() inserts a new object in front ofthe current object (see
dtfinger()) if it is defined or at list front if no current object is defined.Similarly, the calldtap-
pend() appends a new object afterthe current object (seedtfinger()) if it is defined or at list end if
no current object is defined.

Dtdeque
Objects are kept in a deque. This is similar toDtlist except that objects are always inserted at the front
and appended at the tail of the list.

Dtstack
Objects are kept in a stack, i.e., in reverse order of insertion. Thus, the last object inserted is at stack top
and will be the first to be deleted.

3

LIBCDT(3) LIBCDT(3)

Dtqueue
Objects are kept in a queue, i.e., in order of insertion. Thus, the first object inserted is at queue head and
will be the first to be deleted.

DISCIPLINE
Object format and associated management functions are defined in the typeDtdisc_t:

typedef struct
{ int key, size;
int link;
Dtmake_f makef;
Dtfree_f freef;
Dtcompar_f comparf;
Dthash_f hashf;
Dtmemory_f memoryf;
Dtevent_f eventf;

} Dtdisc_t;

int key, size
Each objectobj is identified by a key used for object comparison or hashing.key should be non-negative
and defines an offset intoobj. If size is negative, the key is a null-terminated string with starting address
*(Void_t**)((char*)obj+key). If size is zero, the key is a null-terminated string with starting
address(Void_t*)((char*)obj+key). Finally, if size is positive, the key is a byte array of length
size starting at(Void_t*)((char*)obj+key).

int link
Let obj be an object to be inserted intodt as discussed below. If link is negative, an internally allocated
object holder is used to holdobj. Otherwise,obj should have aDtlink_t structure embeddedlink
bytes into it, i.e., at address(Dtlink_t*)((char*)obj+link).

Void_t* (*makef)(Dt_t* dt, Void_t* obj, Dtdisc_t* disc)
If makef is notNULL, dtinsert(dt,obj) or dtappend() will call it to make a copy of obj suit-
able for insertion intodt. If makef is NULL, obj itself will be inserted intodt.

void (*freef)(Dt_t* dt, Void_t* obj, Dtdisc_t* disc)
If not NULL, freef is used to destroy data associated withobj.

int (*comparf)(Dt_t* dt, Void_t* key1, Void_t* key2, Dtdisc_t* disc)
If not NULL, comparf is used to compare two keys. Itsreturn value should be<0, =0, or >0 to indicate
whetherkey1 is smaller, equal to, or larger thankey2. All three values are significant for method
Dtoset andDtobag. For other methods, a zero value indicates equality and a non-zero value indicates
inequality. If (*comparf)() is NULL, an internal function is used to compare the keys as defined by the
Dtdisc_t.size field.

unsigned int (*hashf)(Dt_t* dt, Void_t* key, Dtdisc_t* disc)
If not NULL, hashf is used to compute the hash value ofkey. It is required that keys compared equal
will also have same hash values. Ifhashf is NULL, an internal function is used to hash the key as defined
by theDtdisc_t.size field.

Void_t* (*memoryf)(Dt_t* dt, Void_t* addr , size_t size, Dtdisc_t* disc)
If not NULL, memoryf is used to allocate and free memory. Whenaddr is NULL, a memory segment of
sizesize is requested.If addr is notNULL andsize is zero,addr is to be freed.If addr is notNULL
andsize is positive, addr is to be resized to the given size. If memoryf is NULL, malloc(3) is used.

int (*eventf)(Dt_t* dt, int type, Void_t* data, Dtdisc_t* disc)
If not NULL, eventf announces various events. Eachev ent may have particular handling of the return
values fromeventf. But a negative return value typically means failure. Following are the events:

DT_OPEN:
dt is being opened.If eventf returns negative, the opening process terminates with failure. If
eventf returns zero, the opening process proceeds in a default manner. A positive return value

4

LIBCDT(3) LIBCDT(3)

indicates special treatment of memory as follows. If *(Void_t**)data is set to point to some
memory segment as discussed inmemoryf, that segment of memory is used to start the dictio-
nary. If *(Void_t**)data is NULL, all memory including that of the dictionary handle itself
will be allocated viamemoryf.

DT_ENDOPEN:
This event announces thatdtopen() has successfully opened a dictionary and is about to return.
Thedata argument ofeventf should be the new dictionary handle itself.

DT_CLOSE:
dt is about to be closed. Ifeventf returns negative, the closing process stops immediately and
dtclose() returns -1.Objects in the dictionary are deleted only ifeventf returns zero.The
dictionary handle itself is processed as follows. If it was allocated viamalloc(), it will be
freed. If it was allocated viamemoryf (seedtopen()) andeventf returns 0, a call tomemo-
ryf will be issued to attempt freeing the handle. Otherwise, nothing will be done to its memory.

As should be clear from their description, the eventsDT_OPEN andDT_CLOSE are designed to be
used along withmemoryf to manage the allocation and deallocation of dictionary and object
memory across dictionaries. In fact, they can be used to manage dictionaries based on shared
and/or persistent memory.

DT_ENDCLOSE:
This event announces thatdtclose() has successfully closed a dictionary and is about to return.

DT_DISC:
The discipline ofdt is being changed to a new one given in (Dtdisc_t*)data.

DT_METH:
The method ofdt is being changed to a new one given in (Dtmethod_t*)data.

DT_HASHSIZE:
The hash table (forDtset andDtbag) is being resized. In this case,*(int*)data has the
current size of the table. The application can set the new table size by first changing
(int)data to the desired size, then return a positive value. Theapplication can also fix the
table size at the current value forever by setting *(int*)data to a negative value, then again
return a positive value. A non-positive return value from the event handling function means that
Cdt will be responsible for choosing the hash table size.

#define DTOFFSET(struct_s,member)
This macro function computes the offset ofmember from the start of structurestruct_s. It is useful for
getting the offset of aDtlink_t embedded inside an object.

#define DTDISC(disc,key,size,link,makef,freef,comparf,hashf,memoryf,eventf)
This macro function initializes the discipline pointed to bydisc with the given values.

OBJECT OPERATIONS
Void_t* dtinsert(Dt_t* dt, Void_t* obj)
Void_t* dtappend(Dt_t* dt, Void_t* obj)

These functions add an object prototyped byobj into dt. dtinsert() anddtappend() perform the
same function for all methods except forDtlist. SeeDtlist for details. If there is an existing object in
dt matchingobj and the storage method isDtset or Dtoset, dtinsert() anddtappend() will
simply return the matching object.Otherwise, a new object is inserted according to the method in use.See
Dtdisc_t.makef for object construction. The new object or a matching object as noted will be returned
on success whileNULL is returned on error.

Void_t* dtdelete(Dt_t* dt, Void_t* obj)
If obj is NULL, methodsDtstack andDtqueue delete respectively stack top or queue head while other
methods do nothing.If obj is notNULL, there are two cases. Ifthe method in use is notDtbag or Dto-
bag, the first object matchingobj is deleted. On the other hand, if the method in use isDtbag or Dto-
bag, the library check to see ifobj is in the dictionary and delete it.If obj is not in the dictionary, some

5

LIBCDT(3) LIBCDT(3)

object matching it will be deleted.SeeDtdisc_t.freef for object destruction.dtdelete() returns
the deleted object (even if it was deallocated) orNULL on error.

Void_t* dtattach(Dt_t* dt, Void_t* obj)
This function is similar todtinsert() but obj itself will be inserted intodt ev en if a discipline func-
tion makef is defined.

Void_t* dtdetach(Dt_t* dt, Void_t* obj)
This function is similar todtdelete() but the object to be deleted fromdt will not be freed (via the dis-
ciplinefreef function).

Void_t* dtsearch(Dt_t* dt, Void_t* obj)
Void_t* dtmatch(Dt_t* dt, Void_t* key)

These functions find an object matchingobj or key either fromdt or from some dictionary accessible
from dt via a viewpath (seedtview().) dtsearch() anddtmatch() return the matching object or
NULL on failure.

Void_t* dtfirst(Dt_t* dt)
Void_t* dtnext(Dt_t* dt, Void_t* obj)

dtfirst() returns the first object indt. dtnext() returns the object following obj. Objects are
ordered based on the storage method in use.For Dtoset andDtobag, objects are ordered by object com-
parisons. For Dtstack, objects are ordered in reverse order of insertion.For Dtqueue, objects are
ordered in order of insertion.For Dtlist, objects are ordered by list position.For Dtset andDtbag,
objects are ordered by some internal order (more below). Thus,objects in a dictionary or a viewpath can be
walked using afor(;;) loop as below.

for(obj = dtfirst(dt); obj; obj = dtnext(dt,obj))
When a dictionary usesDtset or Dtbag, the object order is determined upon a call to
dtfirst()/dtlast(). This order is frozen until a calldtnext()/dtprev() returnsNULL or when
these same functions are called with aNULL object argument. It is important that a
dtfirst()/dtlast() call be balanced by adtnext()/dtprev() call as described. Nested loops
will require multiple balancing, once per loop. If loop balancing is not done carefully, either performance
is degraded or unexpected behaviors may result.

Void_t* dtlast(Dt_t* dt)
Void_t* dtpr ev(Dt_t* dt, Void_t* obj)

dtlast() anddtprev() are like dtfirst() anddtnext() but work in reverse order. Note that
dictionaries on a viewpath are still walked in order but objects in each dictionary are walked in reverse
order.

Void_t* dtfinger(Dt_t* dt)
This function returns thecurrent object of dt, if any. The current object is defined after a successful call to
one of dtsearch(), dtmatch(), dtinsert(), dtfirst(), dtnext(), dtlast(), or
dtprev(). As a side effect of this implementation ofCdt, when a dictionary is based onDtoset and
Dtobag, the current object is always defined and is the root of the tree.

Void_t* dtrenew(Dt_t* dt, Void_t* obj)
This function repositions and perhaps rehashes an objectobj after its key has been changed.dtrenew()
only works ifobj is the current object (seedtfinger()).

dtwalk(Dt_t* dt, int (*userf)(Dt_t*, Void_t*, Void_t*), Void_t* data)
This function calls(*userf)(walk,obj,data) on each object indt and other dictionaries viewable
from it. walk is the dictionary containingobj. If userf() returns a<0 value,dtwalk() terminates
and returns the same value.dtwalk() returns0 on completion.

Dtlink_t* dtflatten(Dt_t* dt)
Dtlink_t* dtlink(Dt_t* dt, Dtlink_t* link)
Void_t* dtobj(Dt_t* dt, Dtlink_t* link)

Usingdtfirst()/dtnext() or dtlast()/dtprev() to walk a single dictionary can incur signifi-
cant cost due to function calls.For efficient walking of a single directory (i.e., no viewpathing),dtflat-
ten() anddtlink() can be used. Objects indt are made into a linked list and walked as follows:

6

LIBCDT(3) LIBCDT(3)

for(link = dtflatten(dt); link; link = dtlink(dt,link))

Note thatdtflatten() returns a list of typeDtlink_t*, not Void_t*. That is, it returns a dictionary
holder pointer, not a user object pointer (although both are the same if the discipline fieldlink is zero.)
The macro functiondtlink() returns the dictionary holder object following link. The macro function
dtobj(dt,link) returns the user object associated withlink, Bew are that the flattened object list is
unflattened on any dictionary operations other thandtlink().

Dtlink_t* dtextract(Dt_t* dt)
int dtrestore(Dt_t* dt, Dtlink_t* link)

dtextract() extracts all objects fromdt and makes it appear empty. dtrestore() repopulatesdt
with objects previously obtained viadtextract(). dtrestore() will fail if dt is not empty. These
functions can be used to share a samedt handle among many sets of objects.They are useful to reduce
dictionary overhead in an application that creates many concurrent dictionaries. It is important that the
same discipline and method are in use at both extraction and restoration. Otherwise, undefined behaviors
may result.

#define DTTREESEARCH(Dt_t* dt, Void_t* obj, action)
#define DTTREEMATCH(Dt_t* dt, Void_t* key , action)

These macro functions are analogues ofdtsearch() anddtmatch() but they can only be used on a
dictionary based on a binary search tree, i.e.,Dtoset or Dtobag.

obj or key:
These are used to find a matching object. If there is no match, the result isNULL.

action:
The matching objecto (which may beNULL) will be processed as follow:

action (o);

Sinceaction is used verbatim, it can be any C code fragment combinable with(o) to form a
syntactically correct C statement.For example, suppose that the matching object is an integer, the
below code accumulates the integer value in a variabletotal:

DTTREEMATCH(dt, key, total += (int));

DICTIONAR Y I NFORMATION
Dt_t* dtvnext(Dt_t* dt)

This returns the dictionary thatdt is viewing, if any.

int dtvcount(Dt_t* dt)
This returns the number of dictionaries that viewdt.

Dt_t* dtvhere(Dt_t* dt)
This returns the dictionaryv viewable fromdt where an object was found from the most recent search or
walk operation.

int dtsize(Dt_t* dt)
This function returns the number of objects stored indt.

int dtstat(Dt_t *dt, Dtstat_t* st, int all)
This function reports dictionary statistics.If all is non-zero, all fields ofst are filled. Otherwise, only
thedt_type anddt_size fields are filled. It returns0 on success and-1 on error.

Dtstat_t contains the below fields:

int dt_type:
This is one of DT_SET, DT_BAG, DT_OSET, DT_OBAG, DT_LIST, DT_STACK, and
DT_QUEUE.

7

LIBCDT(3) LIBCDT(3)

int dt_size:
This contains the number of objects in the dictionary.

int dt_n:
For Dtset andDtbag, this is the number of non-empty chains in the hash table.For Dtoset
andDtobag, this is the deepest level in the tree (counting from zero.) Each level in the tree con-
tains all nodes of equal distance from the root node.dt_n and the below two fields are undefined
for other methods.

int dt_max:
For Dtbag andDtset, this is the size of a largest chain.For Dtoset andDtobag, this is the
size of a largest level.

int* dt_count:
For Dtset and Dtbag, this is the list of counts for chains of particular sizes.For example,
dt_count[1] is the number of chains of size1. For Dtoset andDtobag, this is the list of
sizes of the levels. For example,dt_count[1] is the size of level 1.

HASH FUNCTIONS
unsigned int dtcharhash(unsigned int h, char c)
unsigned int dtstrhash(unsigned int h, char* str, int n)

These functions compute hash values from bytes or strings.dtcharhash() computes a new hash value
from bytec and seed valueh. dtstrhash() computes a new hash value from stringstr and seed value
h. If n is positive, str is a byte array of lengthn; otherwise,str is a null-terminated string.

IMPLEMENT ATION NOTES
Dtset andDtbag are based on hash tables with move-to-front collision chains.Dtoset andDtobag
are based on top-down splay trees.Dtlist, Dtstack andDtqueue are based on doubly linked list.

AUTHOR
Kiem-Phong Vo, kpv@research.att.com

8

