GVPR(1) GeneraCommands Manual GVPR(1)

NAME

gvpr — graph pattern scanning and processing language
SYNOPSIS

gvpr [-icnqV?] [—ooutfile] [—aargs] ['prog | —f prodfile][files]
DESCRIPTION

gvpr (previously known agpr) is a gaph stream editor inspired byvk. It copies input graphs to its out-

put, possibly transforming their structure and attils, creating e graphs, or printing arbitrary informa-

tion. Thegraph model is that pvaded bylibcgraph(3). In particular,gvpr reads and writes graphs using
the dot language.

Basically,gvpr traverses each input graph, denoteddy, visiting each node and edge, matching it with
the predicate-action rules supplied in the input program. The rulesauwated in order For each predi-
cate ®aluating to true, the corresponding action is performed. During thersad, the current node or
edge being visited is denoted &y

For each input graph, there is a target subgraph, denot&d bpitially empty and used to accumulate cho-
sen entities, and an output graff, used for final processing and then written to output. By default, the
output graph is the target graph. The output graph can be set in the progiram lonited sense, on the
command line.

OPTIONS
The following options are supported:

—aargs The stringargsis split into whitespace-separated e¢ak, with the individual tokenssalable as
strings in thegvpr program asARGV[0],...,ARGV[ARGC-1]. Whitespace characters within
single or double quoted substrings, or preceded by a backslash, are ignored as selpagators.
eral, a backslash character turnsanfy pecial meaning of the following characteéMote that the
tokens deried from multiple—a flags are concatenated.

-C Use the source graph as the output graph.
=i Derive the node-induced subgraph extension of the output graph in the context of its root graph.

—o outfile
Causes the output stream to be written to the specified file; by default, output is wisttiyuto

—f progfile
Use the contents of the specified file as the programetute on the input. Iprogfile contains a
slash charactethe name is taken as the pathname of the file. Othemguipewill use the directo-
ries specified in the environmerdanableGVPRPATH to look for the file. If-f is not gven, gvpr
will use the first non-option argument as the program.

-q Turns of warning messages.

-n Turns of graph read-ahead. By default, treriable$NG is set to the ne graph to be processed.
This requires a read of thextgraph before processing the current graph, which may block if the
next graph is only generated in response to some action pertaining to the processing of the current

graph.
-V Causes the program to print version information and exit.
-? Causes the program to print usage information and exit.

OPERANDS
The following operand is supported:

files Names of files containing 1 or more graphs in the dot language.—if myation is gven, the first
name is remeed from the list and used as the input program. If the list of files is estgin
will be used.

PROGRAMS
A gvpr program consists of a list of predicate-action clauses, having one of the forms:

29 August 2013 1

GVPR(1) GeneraCommands Manual GVPR(1)

BEGIN { action}
BEG_G { action}

N [predicate] { action}
E [predicate] { action}
END_G { action}

END { action}

A program can contain at most one of each ofBR&IN, END_G andEND clauses. Therean be awn
number oBEG_G, N andE statements, the first applied to graphs, the second to nodes, the third to edges.
These are separated into blocks, a block consisting of an ofiB@lG statement and all andE state-

ments up to the neBEG_G statement, if an The top-leel semantics of @vpr program are:

Evaluate thaBEGIN clause, if ag.
For each input grapi® {
For each block {
SetG as the current graph and current object.
Evaluate thaBEG_G clause, if ag.
For each node and edge @& {
Set the node or edge as the current object.
Evaluate theéN or E clauses, as appropriate.

}
}

SetG as the current object.
Evaluate th&END_G clause, if ap.

}
Evaluate th&END clause, if ap.

The actions of th8EGIN, BEG_G, END_G andEND clauses are performed when the clauses\ata-e

ated. for N or E clauses, either the predicate or action may be omitted. If there is no predicate with an
action, the action is performed ovegy node or edge, as appropriate. If there is no action and the predicate
evduates to true, the associated node or edge is added to the target graph.

The blocks arevaluated in the order in which th@ccur Within a block, theN clausesk clauses, respec-
tively) are evaluated in the order in which the occiilote, though, that within a blockl or E clauses may
be interlaced, depending on theveigal order.

Predicates and actions are sequences of statements in the C dialect supportedoy3hkbrary. The
only difference between predicates and actions is that the former nrasa lype that may interpreted as
either true ordlse. Herahe usual C carention is followed, in which a non-zer@hue is considered true.
This would include non-empty strings and non-empty references to nodes, edgesweter,Hfoa Sring
can be coverted to an integethis value is used.

In addition to the usual C base typesid, int, char, float, long, unsigned anddouble), gvpr provides

string as a synoym for char*, and the graph-based typrede_t edge_t graph_t andobj_t. Theobj_t

type can be viged as a supertype of the other 3 concrete types; the correct base type is maintained dynami-
cally. Besides these base types, the only other supported type expressions are yasaneigsi

Constants foller C syntax, but strings may be quoted with eithet' or’.... gvpr accepts C++ comments
as well as cpp-type commentBor the latter if a line beyins with a '# characterthe rest of the line is
ignored.

A statement can be a declaration of a function, a variable or an areayexecutable statement. For decla-
rations, there is a single scope. Array declaratious the form:

type array[type0]

where type0 is optional. If it is supplied, the parser will enforce that all array subscripéstira specified
type. If it is not supplied, objects of all types can be used as subscripts. As in C, variables and arrays must

29 August 2013 2

GVPR(1) GeneraCommands Manual GVPR(1)

be declared. In particulaan undeclared variable will be interpreted as the name of an attribute of a node,
edge or graph, depending on the context.

Executable statements can be one of the following:

{[statement .] }
expression /l commonlyvar = expression
if(expression) statement elsestatement
for(expression; expression; expression) statement
for(array [var]) statement
forr(array [var]) statement
while(expression) statement
switch(expression) case statements
break [expression|
continue [expression]
retur n [expression]
Items in brackets are optional.

In the second form of thier statement and therr statement, theariablevar is set to each value used as
an inde in the specified array and then the associastatements evaluated. Br numeric and string
indices, the indices are returned in increasing (decreasing) numeric or lexicographic ofder(ffar ,
respectiely). This can be used for sorting.

Function definitions can only appear in BEGIN clause.

Expressions include the usual &peessions. Stringomparisons using= and!= treat the right hand oper
and as a pattern for the purpose of regular expression matdépatigrns useksh(1) file match pattern syn-
tax. (For simple string equalityuse thestrcmp function.

gvpr will attempt to use an expression as a string or numeric value as appropriate. BaeaStikand
function templates will cause ogarsions to be performed, if possible.

Expressions of graphical type (i.graph_t, node_t, edge_t, obj)tmay be followed by a field reference in

the form of.name The resulting value is the value of the attribute nansdeof the given dbject. Inaddi-

tion, in certain contexts an undeclared, unmodified identifier is taken to be an attribute name. Specifically
such identifiers denote attributes of the current node or edge, redgettiN andE clauses, and the cur

rent graph irBEG_G andEND_G clauses.

As usual in thdibcgraph(3) model, attributes are stringdued. Inaddition,gvpr supports certain pseudo-
attributes of graph objects, not necessarily string-valued. These reflect intrinsic properties of the graph
objects and cannot be set by the user.

head: node _t
the head of an edge.

tail : node _t
the tail of an edge.

name: string
the name of an edge, node or graph. The name of an edge has thet@lhname><edge-
op><head-namejf<key>]", where<edge-op>is "->" or "—=" depending on whether the graph is

directed or not. The bracket pfrkey>] only appears if the edge has a non-triviay k

indegree: int
the indegree of a node.

outdegree: int
the outdegree of a node.

degree: int
the degree of a node.

29 August 2013 3

GVPR(1) GeneraCommands Manual GVPR(1)

root : graph_t
the root graph of an object. The root of a root graph is itself.

parent : graph_t
the parent graph of a subgraph. The parent of a root grajiblLis

n_edges int
the number of edges in the graph

n_nodes: int
the number of nodes in the graph

directed : int
true (non-zero) if the graph is directed

strict : int
true (non-zero) if the graph is strict

BUILT-IN FUNCTIONS
The following functions are built intgvpr. Those functions returning references to graph objects return
NULL in case of failure.

Graphs and subgraph
graph(s: string, t : string) : graph_t
creates a graph whose namesignd whose type is specified by the stringgnoring case, the
characterd), D, S, N have the interpretation undirected, directed, strict, and non-strict, respec-
tively. If tis empty a drected, non-strict graph is generated.

subg(g: graph_t, s: string) : graph_t
creates a subgraph in graplvith names. If the subgraph already exists, it is returned.
isSubgg : graph_t, s: string) : graph_t
returns the subgraph in graghwvith names, if it exists, orNULL otherwise.
fstsubg(g : graph_t) : graph_t
returns the first subgraph in graghor NULL if none exists.
nxtsubg(sg: graph_t) : graph_t
returns the next subgraph aftgy or NULL .
isDirect(g : graph_t) : int
returns true if and only i is directed.
isStrict(g : graph_t) : int
returns true if and only i is strict.
nNodegg : graph_t) : int
returns the number of nodesgn
nEdgedg: graph_t) : int
returns the number of edgesgn
Nodes
node(sg: graph_t, s: string) : node_t
creates a node in graghof names. If such a node already exists, it is returned.
subnoddsg: graph_t, n: node_{ : node_t
inserts the node into the subgraph. Returns the node.
fstnode(g : graph_t) : node_t
returns the first node in graghor NULL if none exists.

nxtnode(n : node_9 : node_t
returns the next node aftein the root graph, alULL .

29 August 2013 4

GVPR(1) GeneraCommands Manual GVPR(1)

nxtnode_sdsg: graph_t, n: node_{ : node_t
returns the next node aftein sg or NULL .

isNodgsg: graph_t, s: string) : node_t
looks for a node in (sub)grajsig of names. If such a node exists, it is returned. Otherwi¢g] L
is returned.

isSubnoddsg: graph_t, n: node_9 : int
returns non-zero if nodeis in (sub)graplsg, or zero otherwise.

indegreeOfsg: graph_t, n: node_9J : int
returns the indegree of nodén (sub)graptsg

outdegreeOfsg: graph_t, n: node_J : int
returns the outdegree of nodé (sub)graplsg

degreeOfsg: graph_t, n: node_J : int
returns the degree of nodén (sub)graptsg

Edges
edgdt: node_t h:node_t s: string) : edge_t
creates an edge with tail notjehead nodeh and names in the root graph. If the graph is undi-
rected, the distinction between head and tail nodes is unimportant. If such an edge zistady e
it is returned.

edge_s¢sg: graph_t,t: node_t h: node_t s: string) : edge_t
creates an edge with tail nojéhead nodéh and names in (sub)graplsg (and all parent graphs).
If the graph is undirected, the distinction between head and tail nodes is unimportant. If such an
edge already exists, it is returned.

subedgég : graph_t, e: edge) : edge_t
inserts the edgeinto the subgraph. Returns the edge.

isEdgdt: node_t h:node_t s: string) : edge_t
looks for an edge with tail nodghead nodér and names. If the graph is undirected, the distinc-
tion between head and tail nodes is unimportant. If such an edge exists, it is returned. Otherwise,
NULL is returned.

isEdge_s¢sg: graph_t,t: node_t h: node_t s: string) : edge_t
looks for an edge with tail nodghead nodér and names in (sub)graptsg If the graph is undi-
rected, the distinction between head and tail nodes is unimportant. If such an edge exists, it is
returned. OtherwiséjULL is returned.
isSubedgég : graph_t, e: edge_} : int
returns non-zero if edgeis in (sub)graplsg or zero otherwise.
fstout(n: node_1 : edge_t
returns the first outedge of nodén the root graph.
fstout_sgsg: graph_t, n: node_1 : edge_t
returns the first outedge of nodén (sub)graplsg
nxtout(e: edge_} : edge_t
returns the next outedge aftein the root graph.
nxtout_sg(sg: graph_t, e: edge } : edge_t
returns the next outedge aftein graphsg
fstin(n: node_1{ : edge_t
returns the first inedge of noden the root graph.
fstin_sg(sg: graph_t, n: node_{ : edge_t
returns the first inedge of noden graphsg

29 August 2013 5

GVPR(1) GeneraCommands Manual GVPR(1)

nxtin(e: edge_} : edge_t
returns the next inedge aftein the root graph.

nxtin_sg(sg: graph_t, e: edge_} : edge_t
returns the next inedge afiem graphsg

fstedgdn : node_1 : edge_t
returns the first edge of noden the root graph.

fstedge_s@sg: graph_t, n: node_9 : edge_t
returns the first edge of nodén graphsg

nxtedgge: edge_tnode_{ : edge_t
returns the next edge aftem the root graph.

nxtedge_s@sg: graph_t, e: edge_tnode_{ : edge_t
returns the next edge aftem the graphsg

opp(e: edge_tnode_{ : node_t
returns the node on the edgeaot equal tan. Returns NULL ifn is not a node oé. This can be
useful when usinfstedgeandnxtedgeto enumerate the neighborsrof

Graph I/O
write (g : graph_t) : void
printsg in dot format onto the output stream.

writeG (g : graph_t, fname: string) : void
printsg in dot format into the filéname

fwriteG (g : graph_t, fd : int) : void
printsg in dot format onto the open stream denoted by the infdger

readG(fname: string) : graph_t
returns a graph read from the fillmme The graph should be in dot format. If no graph can be
read,NULL is returned.

freadG(fd : int) : graph_t
returns the next graph read from the open stiféarReturnsNULL at end of file.

Graph miscellany
deletgg: graph_t, x: obj_t) : void
deletes object from graphg. If gis NULL, the function uses the root graphxofif x is a graph
or subgraph, it is closed unlests locked.

isin(g: graph_t, x: obj_t) :int
returns true ik is in subgraply.

cloneg: graph_t, s: string) : graph_t
creates a clone of gragtwith name of. If sis

, the created graph has the same nangge as

clong(g: graph_t, x: obj_t) : obj_t
creates a clone of objegtin graphg. In particular the nev object has the same namalive
attributes and structure as the original objd€tan object with the sameel & x already exists, its
attributes are werlaid by those ok and the object is returned. If an edge is cloned, both endpoints
are implicitly cloned. If a graph is cloned, all nodes, edges and subgraphs are implicitly ¢foned.
x is a graphg may beNULL , in which case the cloned object will be awmot graph. In this
case, the call is equalent tocloneG,") .

copy(g : graph_t, x: obj_t) : obj_t
creates a cgpof objectx in graphg, where the n& object has the same name/value attributes as
the original object. If an object with the sameyks x already exists, its attributes argedaid by
those ofx and the object is returned. Note that this is a siadlopy. If x is a graph, none of its
nodes, edges or subgraphs are copied into tlvegraph. Ifx is an edge, the endpoints are created
if necessarybut they are not cloned.If x is a graphg may beNULL , in which case the cloned

29 August 2013 6

GVPR(1) GeneraCommands Manual GVPR(1)

object will be a ne& root graph.

copyA(src: obj_t, tgt: obj_t) : int
copies the attributes of objestc to objecttgt, overwriting ary attribute \aluestgt may initially
have.

induce(g : graph_t) : void
extendsg to its node-induced subgraph extension in its root graph.

hasAttr(src: obj_t, name: string) : int
returns non-zero if objestc has an attribute whose namen&me It returns O otherwise.

isAttr (g : graph_t, kind : string, name: string) : int
returns non-zero if an attube namehas been defined mfor objects of the gen kind. For nodes,
edges, and graphsind should be "N", "E", and "G", respeedly. It returns O otherwise.

agef(src: obj_t, name: string) : string
returns the value of atttilte namein objectsrc. This is useful for those cases wheameconflicts
with one of the kywords such as "head" or "root". If the attribute has not been declared in the
graph, the function will initialize it with a dadilt value of "". D avoid this, one should use the
hasAttr or isAttr function to check that the attribute exists.

ase{src: obj_t, name: string, value: string) : int
sets the value of atttilbe namein objectsrc to value Returns O on success, non-zero aitufe.
Seeagetabore.

getDflt(g : graph_t, kind : string, name: string) : string
returns the default value of attuite namein objects ing of the given kind. For nodes, edges, and
graphskind should be "N", "E", and "G", respeatly. If the attribute has not been declared in the
graph, the function will initialize it with a dadilt value of "". D avoid this, one should use the
isAttr function to check that the attribute exists.

setDflt(g : graph_t, kind : string, name: string, value: string) : int
sets the defult value of attribte nameto valuein objects ing of the gven kind. For nodes, edges,
and graphskind should be "N", "E", and "G", respea#ly. Returns O on success, non-zero on
failure. SeegyetDflt abore.

fstAttr (g : graph_t, kind: string) : string
returns the name of the first attribute of objectg iaf the gven kind. For nodes, edges, and
graphskind should be "N", "E", and "G", respeedly. If there are no attributes, the string ™" is
returned.

nxtAttr (g: graph_t, kind: string, name: string) : string
returns the name of the next attribute of objectpohthe given kind after the attriotename The
argumennamemust be the name of an existing atitdy it will typically be the return value of an
previous call tofstAttr or nxtAttr . For nodes, edges, and grapkisid should be "N", "E", and
"G", respectiely. If there are no attributes left, the string "™ is returned.

compOf(g: graph_t, n: node_9 : graph_t
returns the connected component of the ggpbntaining noden, as a sbgraph ofg. The sub-
graph only contains the nodes. One canindeceto add the edges. The function fails and returns
NULL if nis not ing. Connectivity is based on the underlying undirected gragh of

kindOf (obj : obj_t) : string
returns an indication of the type @bj. For nodes, edges, and graphs, it returns "N", "E", and "G",
respectiely.

lock(g: graph_t, v:int) :int
implements graph locking on root graphs. If thedete is positve, the graph is set so that future
calls todeletehave o immediate déct. If vis zero, the graph is unlocked. If there has been a call
to delete the graph while it was locked, the graph is clodedis negaive, nothing is done. In all
cases, the previous lock value is returned.

29 August 2013 7

GVPR(1)

Strings

GeneraCommands Manual GVPR(1)

sprintf (fmt: string, ...) : string

returns the string resulting from formatting the values of the expressions occurrindmsfter
according to therintf (3) format fmt

gsub(str : string, pat: string) : string

gsub(str: string, pat: string, repl : string) : string

sub(str :
sub(str :

returnsstr with all substrings matchingat deleted or replaced brgpl, respectiely.
string, pat: string) : string

string, pat: string, repl : string) : string

returnsstr with the leftmost substring matchimat deleted or replaced bgpl, respectiely. The
characters ™" and '$’ may be used at the beginning and end, resheai patto anchor the pat-
tern to the beginning or end sif.

substr(str : string, idx : int) : string

substr(str : string, idx : int, len: int) : string

returns the substring atr starting at positiondx to the end of the string or of lengm, respec-
tively. Indexing starts at O. Ifdx is negative a idx is greater than the length sfr, a fatal error
occurs. Similarlyin the second case,lénis neyative a idx + lenis greater than the length sif,
a fatal error occurs.

stremp(sl: string, s2: string) : int

provides the standard C functieicmg3).

length(s: string) : int

index(s:

returns the length of string

string, t : string) : int

rindex(s: string, t : string) : int

returns the indeof the character in stringwhere the leftmost (rightmost) cppf string t can be
found, or -1 ift is not a substring of.

match(s: string, p : string) : int

returns the indeof the character in stringwhere the leftmost match of pattgrean be found, or
-1 if no substring o§ matche.

toupper(s: string) : string

returns a version afwith the alphabetic characters weried to upper-case.

tolower(s: string) : string

returns a version afwith the alphabetic characters weried to lower-case.

canon(s: string) : string

html(g:

returns a version afappropriate to be used as an identifier in a dot file.

graph_t, s: string) : string

returns a‘magic” version ofs as an HTML string. This will typically be used to attach an
HTML-lik e label to a graph object. Note that the returned strigg In g. In particular it will be
freed wherg is closed, and to act as an HTML string, it has to be used with an obgedh@idi-
tion, note that the angle bracket quotes should not be parfbése will be added g is written

in concrete DA format.

ishtml(s: string) : int

returns non-zero if and only sfis an HTML string.

xOf(s: string) : string

returns the stringX” if shas the formxX,y", where bothx andy are numeric.

29 August 2013 8

GVPR(1) GeneraCommands Manual GVPR(1)

I/0

yOf(s: string) : string
returns the stringy” if shas the formX,y", where bothx andy are numeric.

[IOf (s: string) : string
returns the stringlik lly" if s has the form Itx,lly,urx,ury”, where all ofllx, lly, urx, and ury are
numeric.

urOf(s)
urOf (s: string) : string returns the stringurx,ury" if s has the formlix,lly,urx,ury”, where all of
I, lly, urx, and ury are numeric.

sscanfs: string, fmt: string, ...) : int
scans the string, extracting \alues according to thescan{3) formatfmt. The values are stored
in the addresses folleng fmt, addresses having the for&w, wherev is some declared variable of
the correct type. Returns the number of items successfully scanned.

split(s: string, arr : array, seps: string) : int
split(s: string, arr : array) : int
tokeng(s: string, arr : array, seps: string) : int

tokengs: string, arr : array) : int
The split function breaks the stringinto fields, while thaokens function breaks the string into
tokens. Afield consists of all non-separator characters betweenstparator characters or the
beginning or end of the string. Thus, a field may be the empty string. ek tiska maximal, non-
empty substring not containing a separator charadtee separator characters are thosergin
the sepsargument. Ifsepsis not provided, the default value is " \t\nThe functions return the
number of fields or tokens.

The fields and tadns are stored in the argument arilye array must bstring-valued and, if an
index type is specified, it must bet. The entries are insted by consecutre integers, starting at
0. Arny values already stored in the array will be eithesrwaritten, or still be present after the
function returns.

print (...) : void
print(expr, ...) prints a string representation of each argument in turnstdtut, followed by a
newline.

printf (fmt: string, ...) : int

printf (fd : int, fmt: string, ..)) : int
prints the string resulting from formatting thalwes of the expressions follimg fmt according to
the printf (3) formatfmt. Returns 0 on succes®8y default, it prints orstdout. If the optional
integerfd is given, output is written on the open stream associatedfdith

scanffmt: string, ...) : int

scanffd : int, fmt: string, ...) : int
scans in values from an input stream according te¢haf(3) formatfmt. The values are stored
in the addresses folldng fmt, addresses having the for&w, wherev is some declared variable of
the correct type. By default, it reads fratdin. If the optional intgerfd is given, input is read
from the open stream associated viith Returns the number of items successfully scanned.

openHs: string, t : string) : int
opens the files as an 1/O stream. The stringgamentt specifies ha the file is opened. Thegu-

ments are the same as for the C functagen(3). It returns an integer denoting the stream, or -1
on error.

As usual, streams 0, 1 and 2 are already opesidais, stdout, and stderr, respectiely. Since
gvpr may usestdin to read the input graphs, the user shoutldausing this stream.

29 August 2013 9

GVPR(1) GeneraCommands Manual GVPR(1)

closeRfd : int) : int
closes the open stream denoted by theyertiel. Streams 0,1 and 2 cannot be closed. Returns 0
on success.

readL(fd : int) : string
returns the next line read from the input strédmit returns the empty string
Note that the newline character is left in the returned string.

on end of file.

Math
exp(d : double) : double
returns e to thdth power.

log(d : double) : double
returns the natural log of

sqrt(d : double) : double
returns the square root of the douthle

pow(d : double, x : double) : double
returnsd raised to theth power.

cogd : double) : double
returns the cosine af

sin(d : double) : double
returns the sine af.

atan2(y : double, x : double) : double
returns the arctangent wiin the range —pi to pi.

MIN (y : double, x : double) : double
returns the minimum of andx.

MAX (y : double, x : double) : double
returns the maximum gfandx.

Associative Arrays
#arr :int
returns the number of elements in the aaay
idxin arr :int
returns 1 if a value has been set for indkoin the arrayarr. It returns O otherwise.
unsef(v: array, idx) : int
removes the item indged by idx. It returns 1 if the item existed, O otherwise.

unsef(v: array) : void
re-initializes the array.

Miscellaneous
exit(v : int) : void
causegvpr to exit with the exit codg.
syster(cmd: string) : int
provides the standard C functi@ysteni3). It executescmdin the uses shell environment, and
returns the exit status of the shell.

rand() : double
returns a pseudo-random double between 0 and 1.

srand() : int

srand(v: int) : int
sets a seed for the random number generHeroptional argumentgs the seed; if it is omitted,
the current time is used. The pieus seed value is returnestand should be called before yan
calls torand.

29 August 2013 10

GVPR(1) GeneraCommands Manual GVPR(1)

colorx(color : string, fmt: string) : string
translates a color from one format to anatfiéie color argument should be a color in one of the
recognized string representations. The value should be one of "RGB", "RGBA", "HSV", or
"HSVA". An empty string is returned on error.

BUILT-IN VARIABLES
gvpr provides certain specialuit-in variables, whose values are set automaticallgupr depending on
the context. Except as noted, the user cannot modify their values.
$:obj_t
denotes the current object (node, edge, graph) depending on thet.cdnie not aailable in
BEGIN or END clauses.

$F : string
is the name of the current input file.

$G: graph_t
denotes the current graph being processed. It isvatdlale inBEGIN or END clauses.

$NG : graph_t
denotes the next graph to be processefiNi® is NULL, the current grapBG is the last graph.
Note that if the input comes from stdin, the last graph cannot be determined until the input pipe is
closed. lItis not available inBEGIN or END clauses, or if then flag is used.

$O: graph_t
denotes the output graph. Before graphensal, it is initialized to the target graph. Aftenseesal
and ay END_G actions, if it refers to a non-empty graph, that graph is printed onto the output
stream. lis only valid inN, E andEND_G clauses. Theutput graph may be set by the user.

$T : graph_t
denotes the current gt graph. It is a subgraph $& and is &ailable only inN, E andEND_G
clauses.

$tgtname: string
denotes the name of the target graph. By default, it is s&vim_result" . If used multiple
times during thexecution ofgvpr, the name will be appended with an gee This variable may
be set by the user.

$tvroot : node_t
indicates the starting node for a (directed or undirected) depth-first or breadthyiarsiairaf the
graph (cf.$tvtype belov). Thedefault value iSNULL for each input graph. After the trersal at
the given root, if the value offtvroot has changed, a wetraversal will begin with the ne value
of $tvroot. Also, setbtvnext below.

$tvnext : node_t
indicates the next starting node for a (directed or undirected) depth-first or breadthsérsakiat
the graph (cf$tvtype below). If a traversal finishes and th&tvroot has not been reset but the
$tvnext has been set but not used, this node will be used as the next chofterdot. The
default value iSNULL for each input graph.

$tvedge: edge_t
For BFS and DFS traersals, this is set to the edge used tovard the current node or edge. At
the beginning of a trersal, or for other tnersal types, the value SULL .

Stvtype : tvtype_t
indicates hwr gvpr traverses a graph. It can only kne of the constant values with the\pxre
"TV_" described bel. TV _flat is the default.

In the underlying graph librarggraph(3), edges in undirected graphs aneegian abitrary direc-
tion. This is used for tkeersals, such a§V_fwd, requiring directed edges.

29 August 2013 11

GVPR(1) GeneraCommands Manual GVPR(1)

ARGC :int
denotes the number of arguments specified by &@gscommand-line argument.

ARGV : string array
denotes the array of arguments specified by-#h@&gscommand-line argument. Tl agument
is given by ARGV[i].
BUILT-IN CONSTANTS
There are sgral symbolic constants defined gypr.

NULL : obj_t
a rull object reference, equalent to 0.

TV_flat : tvtype_t
a smple, flat trarersal, with graph objects visited in seemingly arbitrary order.

TV_ne: tvtype_t
a traversal which first visits all of the nodes, then all of the edges.

TV_en: tvtype_t
a traversal which first visits all of the edges, then all of the nodes.

TV_dfs : tvtype_t

TV_postdfs: tvtype_t

TV_prepostdfs: tvtype_t
a traversal of the graph using a depth-first search on the underlying undirected goapb.the
traversal,gvpr will check the value o$tvroot. If this has the samealue that it had previously (at
the start, the previous value is initializedN@LL .), gvpr will simply look for some uwisited
node and tneerse its connected component. On the other hartyibot has changed, its con-
nected component will be toured, assuming it has not beetopsty visited oy if $tvroot is
NULL , the traversal will stop. Note that usingV_dfs and$tvroot, it is possible to create an infi-
nite loop.

By default, the treersal is done in pre-ordefhat is, a node is visited before all of itsvisited
edges. Br TV_postdfs, dl of a node$ wvisited edges are visited before the nodw. FV/_pre-
postdfs a rode is visited twice, before and after all of its unvisited edges.

TV_fwd : tvtype_t

TV_postfwd : tvtype_t

TV_prepostfwd : tvtype_t
A traversal of the graph using a depth-first search on the graph following only forwardTéaees.
choice of roots for the tvarsal is the same as describedTéf_dfs above. The different order of
visitation specified by'VV_fwd, TV_postfwd andTV_prepostfwd are the same as those specified
by the analogous tvarsalsTV_dfs, TV_postdfsandTV_prepostdfs.

TV_rev: tvtype_t

TV_postrev: tvtype_t

TV_prepostrev: tvtype_t
A traversal of the graph using a depth-first search on the graph following aehgeearcs.The
choice of roots for the tvarsal is the same as describedTéf_dfs above. The different order of
visitation specified byfV_rev, TV_postrevand TV_prepostrev are the same as those specified
by the analogous tvarsalsTV_dfs, TV_postdfsandTV_prepostdfs.

TV_Dbfs : tvtype_t
A traversal of the graph using a breadth-first search on the graph ignoring edge directions. See the
item onTV_dfs above for the role offtvroot.

EXAMPLES
gvpr —i 'N[color=="blue"] file.gv

Generate the node-induced subgraph of all nodes with color blue.

gvpr —c 'N[color=="blue"[{color = "red"} file.gv

29 August 2013 12

GVPR(1) GeneraCommands Manual GVPR(1)

Make dl blue nodes red.

BEGIN {intn, e; inttot_ n=0; inttot_e =0; }
BEG_G {
n = nNodes($G);
e = nEdges($G);
printf ("%d nodes %d edges %s\n", n, e, $G.name);
tot_n +=n;
tot_e +=e;
}
END { printf ("%d nodes %d edges total\n", tot_n, tot_e) }

Version of the programgc.
gvpr -c ™
Equivaent tonop.

BEG_G { graph_t g = graph ("merge", "S"); }
E{

node_t h = clone(g,$.head);

node_t t = clone(g,$.tail);

e.weight = e.weight + 1;

}
END_G {$0 =g;}

Produces a strict version of the input graph, where the weightusgtrdd an edge indicates wanany
edges from the input graph the edge represents.

BEGIN {node_t n; int deg[]}
E{deg[head]++; deg[tail]++; }
END_G {
for (deg(n]) {
printf ("deg[%s] = %d\n", n.name, deg[n]);
}
}

Computes the degrees of nodes with edges.

BEGIN {

int i, indent;

int seen|[string];

void prind (int cnt) {

for (i=0; i < cnt; i++) printf (" ");
}

}
BEG_G {

$tvtype = TV_prepostfwd;
$tvroot = node($,ARGVI[0]);
}
N {
if (seen[$.name]) indent--;
else {
prind(indent);
print ($.name);
seen[$.name] = 1;
indent++;

}

29 August 2013 13

GVPR(1) GeneraCommands Manual GVPR(1)

}

Prints the depth-first tvarsal of the graph, starting with the node whose nam&®isV[0], as anmdented
list.

ENVIRONMENT
GVPRPATH
Colon-separated list of directories to be searched to find the file specified by the —f gyron.
has a default list built in. IGVPRPATH is not defined, the deidilt list is used. IIGVPRPATH
starts with colon, the list is formed by append@®gPRPATH to the default list. IGVPRPATH
ends with colon, the list is formed by appending theadeflist to GVPRPATH. Otherwise,
GVPRPATH is used for the list.

On Windows systems, replace “colow/ith “semicolon’ in the previous paragraph.

BUGS AND WARNINGS
Scripts should be careful deleting nodes duNfp andE{} blocks using BFS and DFS texsals as these
rely on stacks and queues of nodes.

When the program isggn as a ommand line ayument, the usual shell interpretation takes place, which
may affect some of the special namegupr. To avoid this, it is best to wrap the program in single quotes.

If string constants contain pattern metacharacters that you want to escapsl tpastern matching, tov
backslashes will probably be necessay asingle backslash will be lost when the string is originally
scanned. Usuallyt is Smpler to usestrcmp to avoid pattern matching.

As of 24 April 2008 gvpr switched to using a me underlying graph librarywhich uses the simpler model

that there is only one cgpf a node, not one cgpfor each subgraph logically containing it. This means
that iterators such axtnodecannot traerse a subgraph using just a node argument. For this reason, sub-
graph traersal requires ne functions ending in "_sg", which also && sibgraph argument. Thersions
without that suffix will alvays traverse the root graph.

There is a single global scope, except for formal function parametersyamith@se can interfere with the
type system. Also, thextent of all variables is the entire life of the program. It might be preferable for
scope to reflect the natural nesting of the clauses, or for the program to at least reset locally deelared v
ables. Br now, it is advisable to use distinct names for all variables.

If a function ends with a complestatement, such as an IF statement, with each branch doing a return, type
checking maydil. Functionsshould use a return at the end.

The expr library does not support string values of (char*)0. This means wedistimguish between
and (char*)0 edgedys. For the purposes of looking up and creating edges, we translate "™ to be (char*)0,
since this latter value is necessary in order to look yp@dge with a matching head and tail.

Related to this, strings cearted to integers act lék char pointers, getting the value 0 or 1 depending on
whether the string consists solely of zeroes or not. Thus, the ((inty&tpees to 1.

The language inherits the usual C problems such as dangling references and the confusion between '=" and

AUTHOR
Emden R. Gansner <erg@research.att.com>

SEE ALSO
awk(1), gc(1), dot(1), nop(1), expr(3), cgraph(3)

29 August 2013 14

