
NAME
libarchive-formats — archive formats supported by the libarchive library

DESCRIPTION
Thelibarchive(3) library reads and writes a variety of streaming archive formats. Generallyspeaking,
all of these archive formats consist of a series of “entries”. Each entry stores a single file system object, such
as a file, directory, or symbolic link.

The following provides a brief description of each format supported by libarchive, with some information
about recognized extensions or limitations of the current library support.Note that just because a format is
supported by libarchive does not imply that a program that uses libarchive will support that format.Applica-
tions that use libarchive specify which formats they wish to support, though many programs do use
libarchive convenience functions to enable all supported formats.

Tar Formats
Thelibarchive(3) library can read most tar archives. However, it only writes POSIX-standard “ustar”
and “pax interchange” formats.

All tar formats store each entry in one or more 512-byte records. The first record is used for file metadata,
including filename, timestamp, and mode information, and the file data is stored in subsequent records.Later
variants have extended this by either appropriating undefined areas of the header record, extending the header
to multiple records, or by storing special entries that modify the interpretation of subsequent entries.

gnutar The libarchive(3) library can read GNU-format tar archives. It currently supports the most
popular GNU extensions, including modern long filename and linkname support, as well as atime
and ctime data. The libarchive library does not support multi-volume archives, nor the old GNU
long filename format.It can read GNU sparse file entries, including the new POSIX-based for-
mats, but cannot write GNU sparse file entries.

pax The libarchive(3) library can read and write POSIX-compliant pax interchange format ar-
chives. Pax interchange format archives are an extension of the older ustar format that adds a sep-
arate entry with additional attributes stored as key/value pairs immediately before each regular
entry. The presence of these additional entries is the only difference between pax interchange for-
mat and the older ustar format. The extended attributes are of unlimited length and are stored as
UTF-8 Unicode strings.Ke ywords defined in the standard are in all lowercase; vendors are
allowed to define custom keys by preceding them with the vendor name in all uppercase.When
writing pax archives, libarchive uses many of the SCHILY keys defined by Joerg Schilling’s “star”
archiver and a few LIBARCHIVE keys. Thelibarchive library can read most of the SCHILY keys
and most of the GNU keys introduced by GNU tar. It silently ignores any keywords that it does
not understand.

restricted pax
The libarchive library can also write pax archives in which it attempts to suppress the extended
attributes entry whenever possible. Theresult will be identical to a ustar archive unless the
extended attributes entry is required to store a long file name, long linkname, extended ACL, file
flags, or if any of the standard ustar data (user name, group name, UID, GID, etc) cannot be fully
represented in the ustar header. In all cases, the result can be dearchived by any program that can
read POSIX-compliant pax interchange format archives. Programsthat correctly read ustar format
(see below) will also be able to read this format; any extended attributes will be extracted as sepa-
rate files stored inPaxHeader directories.

ustar The libarchive library can both read and write this format. This format has the following limita-
tions:
• Device major and minor numbers are limited to 21 bits. Nodes with larger numbers will not be

added to the archive.
• Path names in the archive are limited to 255 bytes.(Shorter if there is no / character in exactly

the right place.)

BSD December27, 2009 1



LIBARCHIVE-FORMATS (5) BSD File Formats Manual LIBARCHIVE-FORMATS (5)

• Symbolic links and hard links are stored in the archive with the name of the referenced file.
This name is limited to 100 bytes.

• Extended attributes, file flags, and other extended security information cannot be stored.
• Archive entries are limited to 8 gigabytes in size.
Note that the pax interchange format has none of these restrictions.

The libarchive library also reads a variety of commonly-used extensions to the basic tar format. These exten-
sions are recognized automatically whenever they appear.

Numeric extensions.
The POSIX standards require fixed-length numeric fields to be written with some character posi-
tion reserved for terminators.Libarchive allows these fields to be written without terminator char-
acters. Thisextends the allowable range; in particular, ustar archives with this extension can sup-
port entries up to 64 gigabytes in size.Libarchive also recognizes base-256 values in most
numeric fields. This essentially removes all limitations on file size, modification time, and device
numbers.

Solaris extensions
Libarchive recognizes ACL and extended attribute records written by Solaris tar. Currently,
libarchive only has support for old-style ACLs; the newer NFSv4 ACLs are recognized but dis-
carded.

The first tar program appeared in Seventh Edition Unix in 1979. The first official standard for the tar file for-
mat was the “ustar” (Unix Standard Tar) format defined by POSIX in 1988. POSIX.1-2001 extended the
ustar format to create the “pax interchange” format.

Cpio Formats
The libarchive library can read a number of common cpio variants and can write “odc” and “newc” format
archives. A cpio archive stores each entry as a fixed-size header followed by a variable-length filename and
variable-length data.Unlike the tar format, the cpio format does only minimal padding of the header or file
data. Thereare several cpio variants, which differ primarily in how they store the initial header: some store
the values as octal or hexadecimal numbers in ASCII, others as binary values of varying byte order and
length.

binary The libarchive library transparently reads both big-endian and little-endian variants of the original
binary cpio format. This format used 32-bit binary values for file size and mtime, and 16-bit
binary values for the other fields.

odc The libarchive library can both read and write this POSIX-standard format, which is officially
known as the “cpio interchange format” or the “octet-oriented cpio archive format” and sometimes
unofficially referred to as the “old character format”.This format stores the header contents as
octal values in ASCII. It is standard, portable, and immune from byte-order confusion.File sizes
and mtime are limited to 33 bits (8GB file size), other fields are limited to 18 bits.

SVR4 The libarchive library can read both CRC and non-CRC variants of this format. The SVR4 format
uses eight-digit hexadecimal values for all header fields.This limits file size to 4GB, and also lim-
its the mtime and other fields to 32 bits. The SVR4 format can optionally include a CRC of the file
contents, although libarchive does not currently verify this CRC.

Cpio first appeared in PWB/UNIX 1.0, which was released within AT&T in 1977. PWB/UNIX 1.0 formed
the basis of System III Unix, released outside of AT&T in 1981. This makes cpio older than tar, although
cpio was not included in Version 7 AT&T Unix.As a result, the tar command became much better known in
universities and research groups that used Version 7. The combination of thefind andcpio utilities pro-
vided very precise control over file selection.Unfortunately, the format has many limitations that make it
unsuitable for widespread use. Only the POSIX format permits files over 4GB, and its 18-bit limit for most
other fields makes it unsuitable for modern systems. In addition, cpio formats only store numeric UID/GID

BSD December27, 2009 2



LIBARCHIVE-FORMATS (5) BSD File Formats Manual LIBARCHIVE-FORMATS (5)

values (not usernames and group names), which can make it very difficult to correctly transfer archives
across systems with dissimilar user numbering.

Shar Formats
A “ shell archive” is a shell script that, when executed on a POSIX-compliant system, will recreate a collec-
tion of file system objects. The libarchive library can write two different kinds of shar archives:

shar The traditional shar format uses a limited set of POSIX commands, includingecho(1),mkdir(1),
andsed(1). It is suitable for portably archiving small collections of plain text files.However, it is
not generally well-suited for large archives (many implementations ofsh(1) have limits on the size
of a script) nor should it be used with non-text files.

shardump
This format is similar to shar but encodes files usinguuencode(1) so that the result will be a
plain text file regardless of the file contents. It also includes additional shell commands that
attempt to reproduce as many file attributes as possible, including owner, mode, and flags.The
additional commands used to restore file attributes make shardump archives less portable than
plain shar archives.

ISO9660 format
Libarchive can read and extract from files containing ISO9660-compliant CDROM images. In many cases,
this can remove the need to burn a physical CDROM just in order to read the files contained in an ISO9660
image. Italso avoids security and complexity issues that come with virtual mounts and loopback devices.
Libarchive supports the most common Rockridge extensions and has partial support for Joliet extensions. If
both extensions are present, the Joliet extensions will be used and the Rockridge extensions will be ignored.
In particular, this can create problems with hardlinks and symlinks, which are supported by Rockridge but
not by Joliet.

Zip format
Libarchive can read and write zip format archives that have uncompressed entries and entries compressed
with the “deflate” algorithm. Older zip compression algorithms are not supported. It can extract jar archives,
archives that use Zip64 extensions and many self-extracting zip archives. Libarchive reads Zip archives as
they are being streamed, which allows it to read archives of arbitrary size. It currently does not use the cen-
tral directory; this limits libarchive’s ability to support some self-extracting archives and ones that have been
modified in certain ways.

Archi ve (library) file f ormat
The Unix archive format (commonly created by thear(1) archiver) is a general-purpose format which is
used almost exclusively for object files to be read by the link editorld(1). Thear format has never been
standardised. Thereare two common variants: the GNU format derived from SVR4, and the BSD format,
which first appeared in 4.4BSD. The two differ primarily in their handling of filenames longer than 15 char-
acters: the GNU/SVR4 variant writes a filename table at the beginning of the archive; the BSD format stores
each long filename in an extension area adjacent to the entry. Libarchive can read both extensions, including
archives that may include both types of long filenames. Programs using libarchive can write GNU/SVR4
format if they provide a filename table to be written into the archive before any of the entries.Any entries
whose names are not in the filename table will be written using BSD-style long filenames.This can cause
problems for programs such as GNU ld that do not support the BSD-style long filenames.

mtree
Libarchive can read and write files inmtree(5) format. This format is not a true archive format, but rather a
textual description of a file hierarchy in which each line specifies the name of a file and provides specific
metadata about that file.Libarchive can read all of the keywords supported by both the NetBSD and
FreeBSD versions ofmtree(1), although many of the keywords cannot currently be stored in an

BSD December27, 2009 3



LIBARCHIVE-FORMATS (5) BSD File Formats Manual LIBARCHIVE-FORMATS (5)

archive_entry object. Whenwriting, libarchive supports use of thearchive_write_set_options(3)
interface to specify which keywords should be included in the output. If libarchive was compiled with access
to suitable cryptographic libraries (such as the OpenSSL libraries), it can compute hash entries such as
sha512 or md5 from file data being written to the mtree writer.

When reading an mtree file, libarchive will locate the corresponding files on disk using thecontents
keyword if present or the regular filename.If it can locate and open the file on disk, it will use that to fill in
any metadata that is missing from the mtree file and will read the file contents and return those to the pro-
gram using libarchive. If it cannot locate and open the file on disk, libarchive will return an error for any
attempt to read the entry body.

RAR
libarchive has limited support to read files in RAR format. Currently, libarchive can read single RAR files in
RARv3 format which have been either created uncompressed, or compressed using any of the compression
methods supported by the RARv3 format. libarchive can also extract RAR files which have been created as
self-extracting RAR files.

SEE ALSO
ar(1),cpio(1),mkisofs(1),shar(1),tar(1),zip(1),zlib(3),cpio(5),mtree(5),tar(5)

BSD December27, 2009 4


