NAME

LIBRA

ar chi ve_r ead — functions for reading streaming anots

RY
Streaming Archie Library (libarchve, -larchive)

SYNOPSIS

#i ncl ude <archive. h>

DESCRIPTION

Cre

These functions provide a complete API for reading streamingvaschihegeneral process is to first create
the struct archie object, set options, initialize the readiéerate oer the archve headers and associated data,
then close the aroke and release all resources.

ate archive dject
Seear chi ve_read_new3).

To read an archig, you must first obtain an initializegruct archie object fromar chi ve_r ead_new().

Enable filters and ormats

Set

Seearchive_read filter(3)andarchive_read fornat(3).

You can then modify this object for the desired operations with #n@wsar chi ve_read_set XXX()

and ar chi ve_read_support XXX() functions. In particularyou will need to inoke gpropriate
archi ve_read_support _XXX() functions to enable the corresponding compression and format support.
Note that these latter functions perfornotdistinct operations: thecause the corresponding support code to
be linked into your program, and thenable the corresponding auto-detect code. Unless ywriacific
constraints, you will generally amt to irvoke archive_read support filter_all() and
archive_read_support _format_al |l () to enable auto-detect for all formats and compression types
currently supported by the library.

options
Seear chi ve_read_set options(3).

Open archive

Seear chi ve_r ead_open(3).

Once you hee prepared thetruct archie object, you calar chi ve_r ead_open() to actually open the ar
chive and prepare it for reading. There areesal variants of this function; the most basipects you to
provide pointers to seral functions that can provide blocks of bytes from the mechiThere are con-
venience forms that alle you to specify a filename, file descriptbt LE [object, or a block of memory
from which to read the arché data. Notethat the core library makes no assumptions about the size of the
blocks read; callback functions are free to read wieat#ock size is most appropriate for the medium.

Consume achive

BSD

Seear chi ve_r ead_header (3),ar chi ve_r ead_dat a(3) andar chi ve_read_extract (3).

Each archie entry consists of a header followed by a certain amount of d@ta.can obtain the next header
with ar chi ve_read_next _header (), which returns a pointer to atruct archie_entry structure with
information about the current arghidement. Ifthe entry is a regular file, then the header will be fodid
by the file data.You can usear chi ve_read_dat a() (which works much lik ther ead(2) system call)
to read this data from the aregjor ar chi ve_r ead_dat a_bl ock() which provides a slightly morefef
cient interace. You may prefer to use the higHevel ar chi ve_read_dat a_ski p(), which reads and
discards the data for this entay chi ve_read_data_to_fi |l e(), which copies the data to the piaded
file descriptoror ar chi ve_r ead_ext r act (), which recreates the specified entry on disk and copies data
from the archie. In particulatr note thatar chi ve_r ead_ext r act () uses thatruct archie_entrystructure
that you provide it, which may dr from the entry just read from the anahi In particular mary applica-
tions will want to @erride the pathname, file permissions, or ownership.

Februan?, 2012 1



ARCHIVE_READ (3) BSD Library Functions Manual ARCHIVE_READ (3)

Release esources

Seear chi ve_read_free(3).

Once you hee finished reading data from the arahiyou should calbar chi ve_read_cl ose() to close
the archie, then callar chi ve_r ead_free() to release all resources, including all memory allocated by
the library.

EXAMPLE

BSD

The following illustrates basic usage of the librahy this example, the callback functions are simply wrap-
pers around the standasgden(2), r ead(2), andcl ose(2) system calls.

voi d
list_archive(const char [hane)
{
struct mydata [Chydat a;
struct archive [&;
struct archive_entry [entry;

nydata = mal | oc(si zeof (struct nydata));

a = archive_read new();

nydat a- >nane = nane;

archive_read_support filter_all (a);

archive_read_support _format_all (a);

archive_read_open(a, nydata, myopen, nyread, nyclose);

whil e (archive_read next header(a, &entry) == ARCH VE OK) {
printf("%\n",archive_entry pat hnanme(entry));
archive_read_data_skip(a);

}

archive_read_free(a);

free(nydata);

}

ssize t
nmyread(struct archive [, void [klient _data, const void [Mbuff)

{
struct mydata Chydata = client_data;

(buf f = nydat a- >buff;
return (read(nydata->fd, nydata->buff, 10240));
}

i nt
nmyopen(struct archive [, void [tlient_data)

{
struct mydata Chydata = client_data;

nydat a- >fd = open(nydat a- >nane, O RDONLY);
return (mydata->fd >= 0 ? ARCH VE_ OK : ARCHI VE FATAL);
}

i nt
nmycl ose(struct archive [h, void [&lient_data)

{

Februan?, 2012 2



ARCHIVE_READ (3) BSD Library Functions Manual ARCHIVE_READ (3)

struct mydata Chydata = client_data;

if (mydata->fd > 0)
cl ose(nydat a- >f d) ;
return (ARCH VE OXK);

}

SEE ALSO
tar (1),1i barchi ve(3),archi ve_read_new(3),ar chi ve_read_dat a(3),
archive_read_extract (3),archive_read filter(3),archive_read fornat(3),
archi ve_read_header (3),archi ve_read_open(3),archi ve_read_set opti ons(3),
archive_util (3),tar(5)

HISTORY
Thel i bar chi ve library first appeared iRreeBSD5.3.

AUTHORS
Thel i bar chi ve library was written by Tim Kientzl&ientzle @acm.org

BUGS
Many traditional archier programs treat empty files as valid empty arehi For example, map implemen-
tations oft ar (1) allov you to append entries to an empty filef course, it is impossible to determine the
format of an empty file by inspecting the contents, so this library treats empty filesig &aspecial
“empty” format.

BSD Februan2, 2012 3



